File size: 6,988 Bytes
f8aaa9d
78aee58
d38e256
f8aaa9d
d38e256
f8aaa9d
78aee58
f8aaa9d
c137e5c
f8aaa9d
 
78aee58
f8aaa9d
c137e5c
f8aaa9d
d38e256
f8aaa9d
d38e256
d638712
78aee58
c137e5c
 
 
d38e256
c137e5c
 
78aee58
d638712
 
78aee58
d38e256
 
78aee58
d38e256
 
 
 
78aee58
 
 
 
 
 
 
 
d638712
78aee58
001b623
d38e256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f96bc2
d38e256
c137e5c
 
 
 
7c2c622
 
d38e256
f8aaa9d
78aee58
c137e5c
d38e256
c137e5c
d38e256
78aee58
 
 
 
 
d38e256
 
78aee58
d38e256
 
 
 
 
 
 
78aee58
d38e256
 
 
 
 
 
 
 
 
78aee58
d38e256
78aee58
d38e256
 
 
 
78aee58
 
 
 
 
d38e256
78aee58
d38e256
 
 
 
 
 
 
 
78aee58
 
 
 
 
 
d38e256
78aee58
d38e256
f8aaa9d
c137e5c
f8aaa9d
78aee58
0f96bc2
d38e256
78aee58
 
0f96bc2
d38e256
 
 
 
78aee58
f8aaa9d
d38e256
 
78aee58
f8aaa9d
 
 
 
78aee58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import time
import json
import gradio as gr
import cv2
from google import genai
from google.genai import types

# Retrieve API key from environment variables
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
    raise ValueError("Please set the GOOGLE_API_KEY environment variable with your Google Cloud API key.")

# Initialize the Gemini API client
client = genai.Client(api_key=GOOGLE_API_KEY)
MODEL_NAME = "gemini-2.5-pro-exp-03-25"  # Model supporting video analysis

def upload_and_process_video(video_file: str, timeout: int = 300) -> types.File:
    """
    Upload a video file to the Gemini API and wait for processing.
    
    Args:
        video_file (str): Path to the video file
        timeout (int): Maximum time to wait for processing in seconds (default: 5 minutes)
    
    Returns:
        types.File: Processed video file object
    """
    try:
        video_file_obj = client.files.upload(file=video_file)
        start_time = time.time()
        
        while video_file_obj.state == "PROCESSING":
            elapsed_time = time.time() - start_time
            if elapsed_time > timeout:
                raise TimeoutError(f"Video processing timed out after {timeout} seconds.")
            print(f"Processing {video_file}... ({int(elapsed_time)}s elapsed)")
            time.sleep(10)
            video_file_obj = client.files.get(name=video_file_obj.name)
        
        if video_file_obj.state == "FAILED":
            raise ValueError(f"Video processing failed: {video_file_obj.state}")
        
        print(f"Video processing complete: {video_file_obj.uri}")
        return video_file_obj
    except Exception as e:
        raise Exception(f"Error uploading video: {str(e)}")

def hhmmss_to_seconds(timestamp: str) -> float:
    """
    Convert HH:MM:SS timestamp to seconds.
    
    Args:
        timestamp (str): Time in HH:MM:SS format
    
    Returns:
        float: Time in seconds
    """
    h, m, s = map(float, timestamp.split(":"))
    return h * 3600 + m * 60 + s

def extract_key_frames(video_file: str, key_frames_json: str) -> list:
    """
    Extract key frames from the video based on JSON data.
    
    Args:
        video_file (str): Path to the video file
        key_frames_json (str): JSON string with key frames data
    
    Returns:
        list: List of tuples (image, caption)
    """
    try:
        key_frames = json.loads(key_frames_json)
        if not isinstance(key_frames, list):
            raise ValueError("Key frames data must be a list of objects.")
        
        extracted_frames = []
        cap = cv2.VideoCapture(video_file)
        if not cap.isOpened():
            raise ValueError("Could not open video file.")
        
        for frame in key_frames:
            timestamp = frame.get("timecode", frame.get("timestamp", ""))
            title = frame.get("title", frame.get("caption", "Untitled"))
            if not timestamp:
                continue
            
            seconds = hhmmss_to_seconds(timestamp)
            cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
            ret, frame_img = cap.read()
            if ret:
                frame_rgb = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
                caption = f"{timestamp}: {title}"
                extracted_frames.append((frame_rgb, caption))
        
        cap.release()
        return extracted_frames
    except Exception as e:
        print(f"Error extracting frames: {str(e)}")
        return []

def analyze_video(video_file: str, user_query: str) -> tuple[str, list]:
    """
    Analyze the video using the Gemini API and extract key frames.
    
    Args:
        video_file (str): Path to the video file
        user_query (str): Optional query to guide the analysis
    
    Returns:
        tuple: (Markdown report, list of key frames as (image, caption) tuples)
    """
    # Validate input
    if not video_file or not os.path.exists(video_file):
        return "Please upload a valid video file.", []
    if not video_file.lower().endswith('.mp4'):
        return "Please upload an MP4 video file.", []

    try:
        # Upload and process the video
        video_file_obj = upload_and_process_video(video_file)

        # Step 1: Generate detailed summary
        summary_prompt = "Provide a detailed summary of this video with timestamps for key sections."
        if user_query:
            summary_prompt += f" Focus on: {user_query}"
        
        summary_response = client.models.generate_content(
            model=MODEL_NAME,
            contents=[video_file_obj, summary_prompt]
        )
        summary = summary_response.text

        # Step 2: Extract key frames in an agentic loop
        key_frames_prompt = (
            "Identify key frames in this video and return them as a JSON array. "
            "Each object should have 'timecode' (in HH:MM:SS format) and 'title' describing the scene."
        )
        if user_query:
            key_frames_prompt += f" Focus on: {user_query}"
        
        key_frames_response = client.models.generate_content(
            model=MODEL_NAME,
            contents=[video_file_obj, key_frames_prompt]
        )
        key_frames_json = key_frames_response.text
        
        # Parse and extract frames
        key_frames = extract_key_frames(video_file, key_frames_json)

        # Generate Markdown report
        markdown_report = (
            "## Video Analysis Report\n\n"
            f"**Summary:**\n{summary}\n"
            f"**Video URI:** {video_file_obj.uri}\n"
        )
        if key_frames:
            markdown_report += "\n**Key Frames Identified:**\n"
            for i, (_, caption) in enumerate(key_frames, 1):
                markdown_report += f"- Frame {i}: {caption}\n"
        else:
            markdown_report += "\n*No key frames extracted.*\n"

        return markdown_report, key_frames

    except Exception as e:
        error_msg = (
            "## Video Analysis Report\n\n"
            f"**Error:** Unable to analyze video.\n"
            f"Details: {str(e)}\n"
            "Please check your API key, ensure the video is valid, or try again later."
        )
        return error_msg, []

# Define the Gradio interface
iface = gr.Interface(
    fn=analyze_video,
    inputs=[
        gr.Video(label="Upload Video File (MP4)"),
        gr.Textbox(label="Analysis Query (optional)", 
                  placeholder="e.g., focus on main events or themes")
    ],
    outputs=[
        gr.Markdown(label="Video Analysis Report"),
        gr.Gallery(label="Key Frames", columns=2)
    ],
    title="AI Video Analysis Agent with Gemini",
    description=(
        "Upload an MP4 video to get a detailed summary and key frames using Google's Gemini API. "
        "This tool analyzes the video content directly and extracts key moments as images. "
        "Optionally, provide a query to guide the analysis."
    )
)

if __name__ == "__main__":
    iface.launch(share=True)