Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import os
|
2 |
import time
|
|
|
3 |
import gradio as gr
|
|
|
4 |
from google import genai
|
5 |
from google.genai import types
|
6 |
|
@@ -11,22 +13,28 @@ if not GOOGLE_API_KEY:
|
|
11 |
|
12 |
# Initialize the Gemini API client
|
13 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
14 |
-
MODEL_NAME = "gemini-2.5-pro-exp-03-25" # Model
|
15 |
|
16 |
-
def upload_and_process_video(video_file: str) -> types.File:
|
17 |
"""
|
18 |
Upload a video file to the Gemini API and wait for processing.
|
19 |
|
20 |
Args:
|
21 |
video_file (str): Path to the video file
|
|
|
22 |
|
23 |
Returns:
|
24 |
types.File: Processed video file object
|
25 |
"""
|
26 |
try:
|
27 |
video_file_obj = client.files.upload(file=video_file)
|
|
|
|
|
28 |
while video_file_obj.state == "PROCESSING":
|
29 |
-
|
|
|
|
|
|
|
30 |
time.sleep(10)
|
31 |
video_file_obj = client.files.get(name=video_file_obj.name)
|
32 |
|
@@ -38,74 +46,152 @@ def upload_and_process_video(video_file: str) -> types.File:
|
|
38 |
except Exception as e:
|
39 |
raise Exception(f"Error uploading video: {str(e)}")
|
40 |
|
41 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
-
Analyze the video using the Gemini API and
|
44 |
|
45 |
Args:
|
46 |
video_file (str): Path to the video file
|
47 |
user_query (str): Optional query to guide the analysis
|
48 |
|
49 |
Returns:
|
50 |
-
|
51 |
"""
|
52 |
# Validate input
|
53 |
if not video_file or not os.path.exists(video_file):
|
54 |
-
return "Please upload a valid video file."
|
55 |
if not video_file.lower().endswith('.mp4'):
|
56 |
-
return "Please upload an MP4 video file."
|
57 |
|
58 |
try:
|
59 |
# Upload and process the video
|
60 |
video_file_obj = upload_and_process_video(video_file)
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
if user_query:
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
#
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
model=MODEL_NAME,
|
70 |
-
contents=[
|
71 |
-
video_file_obj, # Pass the processed video file object
|
72 |
-
prompt
|
73 |
-
]
|
74 |
)
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
# Generate Markdown report
|
78 |
markdown_report = (
|
79 |
"## Video Analysis Report\n\n"
|
80 |
f"**Summary:**\n{summary}\n"
|
|
|
81 |
)
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
except Exception as e:
|
85 |
error_msg = (
|
86 |
"## Video Analysis Report\n\n"
|
87 |
f"**Error:** Unable to analyze video.\n"
|
88 |
f"Details: {str(e)}\n"
|
|
|
89 |
)
|
90 |
-
return error_msg
|
91 |
|
92 |
# Define the Gradio interface
|
93 |
iface = gr.Interface(
|
94 |
fn=analyze_video,
|
95 |
inputs=[
|
96 |
-
gr.Video(label="Upload Video File (MP4)"),
|
97 |
gr.Textbox(label="Analysis Query (optional)",
|
98 |
placeholder="e.g., focus on main events or themes")
|
99 |
],
|
100 |
-
outputs=
|
|
|
|
|
|
|
101 |
title="AI Video Analysis Agent with Gemini",
|
102 |
description=(
|
103 |
-
"Upload an MP4 video to get a summary using Google's Gemini API. "
|
104 |
-
"This tool analyzes the video content directly
|
105 |
"Optionally, provide a query to guide the analysis."
|
106 |
)
|
107 |
)
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
-
# Launch with share=True to create a public link
|
111 |
iface.launch(share=True)
|
|
|
1 |
import os
|
2 |
import time
|
3 |
+
import json
|
4 |
import gradio as gr
|
5 |
+
import cv2
|
6 |
from google import genai
|
7 |
from google.genai import types
|
8 |
|
|
|
13 |
|
14 |
# Initialize the Gemini API client
|
15 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
16 |
+
MODEL_NAME = "gemini-2.5-pro-exp-03-25" # Model supporting video analysis
|
17 |
|
18 |
+
def upload_and_process_video(video_file: str, timeout: int = 300) -> types.File:
|
19 |
"""
|
20 |
Upload a video file to the Gemini API and wait for processing.
|
21 |
|
22 |
Args:
|
23 |
video_file (str): Path to the video file
|
24 |
+
timeout (int): Maximum time to wait for processing in seconds (default: 5 minutes)
|
25 |
|
26 |
Returns:
|
27 |
types.File: Processed video file object
|
28 |
"""
|
29 |
try:
|
30 |
video_file_obj = client.files.upload(file=video_file)
|
31 |
+
start_time = time.time()
|
32 |
+
|
33 |
while video_file_obj.state == "PROCESSING":
|
34 |
+
elapsed_time = time.time() - start_time
|
35 |
+
if elapsed_time > timeout:
|
36 |
+
raise TimeoutError(f"Video processing timed out after {timeout} seconds.")
|
37 |
+
print(f"Processing {video_file}... ({int(elapsed_time)}s elapsed)")
|
38 |
time.sleep(10)
|
39 |
video_file_obj = client.files.get(name=video_file_obj.name)
|
40 |
|
|
|
46 |
except Exception as e:
|
47 |
raise Exception(f"Error uploading video: {str(e)}")
|
48 |
|
49 |
+
def hhmmss_to_seconds(timestamp: str) -> float:
|
50 |
+
"""
|
51 |
+
Convert HH:MM:SS timestamp to seconds.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
timestamp (str): Time in HH:MM:SS format
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
float: Time in seconds
|
58 |
+
"""
|
59 |
+
h, m, s = map(float, timestamp.split(":"))
|
60 |
+
return h * 3600 + m * 60 + s
|
61 |
+
|
62 |
+
def extract_key_frames(video_file: str, key_frames_json: str) -> list:
|
63 |
+
"""
|
64 |
+
Extract key frames from the video based on JSON data.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
video_file (str): Path to the video file
|
68 |
+
key_frames_json (str): JSON string with key frames data
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
list: List of tuples (image, caption)
|
72 |
+
"""
|
73 |
+
try:
|
74 |
+
key_frames = json.loads(key_frames_json)
|
75 |
+
if not isinstance(key_frames, list):
|
76 |
+
raise ValueError("Key frames data must be a list of objects.")
|
77 |
+
|
78 |
+
extracted_frames = []
|
79 |
+
cap = cv2.VideoCapture(video_file)
|
80 |
+
if not cap.isOpened():
|
81 |
+
raise ValueError("Could not open video file.")
|
82 |
+
|
83 |
+
for frame in key_frames:
|
84 |
+
timestamp = frame.get("timecode", frame.get("timestamp", ""))
|
85 |
+
title = frame.get("title", frame.get("caption", "Untitled"))
|
86 |
+
if not timestamp:
|
87 |
+
continue
|
88 |
+
|
89 |
+
seconds = hhmmss_to_seconds(timestamp)
|
90 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
|
91 |
+
ret, frame_img = cap.read()
|
92 |
+
if ret:
|
93 |
+
frame_rgb = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
|
94 |
+
caption = f"{timestamp}: {title}"
|
95 |
+
extracted_frames.append((frame_rgb, caption))
|
96 |
+
|
97 |
+
cap.release()
|
98 |
+
return extracted_frames
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Error extracting frames: {str(e)}")
|
101 |
+
return []
|
102 |
+
|
103 |
+
def analyze_video(video_file: str, user_query: str) -> tuple[str, list]:
|
104 |
"""
|
105 |
+
Analyze the video using the Gemini API and extract key frames.
|
106 |
|
107 |
Args:
|
108 |
video_file (str): Path to the video file
|
109 |
user_query (str): Optional query to guide the analysis
|
110 |
|
111 |
Returns:
|
112 |
+
tuple: (Markdown report, list of key frames as (image, caption) tuples)
|
113 |
"""
|
114 |
# Validate input
|
115 |
if not video_file or not os.path.exists(video_file):
|
116 |
+
return "Please upload a valid video file.", []
|
117 |
if not video_file.lower().endswith('.mp4'):
|
118 |
+
return "Please upload an MP4 video file.", []
|
119 |
|
120 |
try:
|
121 |
# Upload and process the video
|
122 |
video_file_obj = upload_and_process_video(video_file)
|
123 |
|
124 |
+
# Step 1: Generate detailed summary
|
125 |
+
summary_prompt = "Provide a detailed summary of this video with timestamps for key sections."
|
126 |
if user_query:
|
127 |
+
summary_prompt += f" Focus on: {user_query}"
|
128 |
+
|
129 |
+
summary_response = client.models.generate_content(
|
130 |
+
model=MODEL_NAME,
|
131 |
+
contents=[video_file_obj, summary_prompt]
|
132 |
+
)
|
133 |
+
summary = summary_response.text
|
134 |
|
135 |
+
# Step 2: Extract key frames in an agentic loop
|
136 |
+
key_frames_prompt = (
|
137 |
+
"Identify key frames in this video and return them as a JSON array. "
|
138 |
+
"Each object should have 'timecode' (in HH:MM:SS format) and 'title' describing the scene."
|
139 |
+
)
|
140 |
+
if user_query:
|
141 |
+
key_frames_prompt += f" Focus on: {user_query}"
|
142 |
+
|
143 |
+
key_frames_response = client.models.generate_content(
|
144 |
model=MODEL_NAME,
|
145 |
+
contents=[video_file_obj, key_frames_prompt]
|
|
|
|
|
|
|
146 |
)
|
147 |
+
key_frames_json = key_frames_response.text
|
148 |
+
|
149 |
+
# Parse and extract frames
|
150 |
+
key_frames = extract_key_frames(video_file, key_frames_json)
|
151 |
|
152 |
# Generate Markdown report
|
153 |
markdown_report = (
|
154 |
"## Video Analysis Report\n\n"
|
155 |
f"**Summary:**\n{summary}\n"
|
156 |
+
f"**Video URI:** {video_file_obj.uri}\n"
|
157 |
)
|
158 |
+
if key_frames:
|
159 |
+
markdown_report += "\n**Key Frames Identified:**\n"
|
160 |
+
for i, (_, caption) in enumerate(key_frames, 1):
|
161 |
+
markdown_report += f"- Frame {i}: {caption}\n"
|
162 |
+
else:
|
163 |
+
markdown_report += "\n*No key frames extracted.*\n"
|
164 |
+
|
165 |
+
return markdown_report, key_frames
|
166 |
|
167 |
except Exception as e:
|
168 |
error_msg = (
|
169 |
"## Video Analysis Report\n\n"
|
170 |
f"**Error:** Unable to analyze video.\n"
|
171 |
f"Details: {str(e)}\n"
|
172 |
+
"Please check your API key, ensure the video is valid, or try again later."
|
173 |
)
|
174 |
+
return error_msg, []
|
175 |
|
176 |
# Define the Gradio interface
|
177 |
iface = gr.Interface(
|
178 |
fn=analyze_video,
|
179 |
inputs=[
|
180 |
+
gr.Video(label="Upload Video File (MP4)"),
|
181 |
gr.Textbox(label="Analysis Query (optional)",
|
182 |
placeholder="e.g., focus on main events or themes")
|
183 |
],
|
184 |
+
outputs=[
|
185 |
+
gr.Markdown(label="Video Analysis Report"),
|
186 |
+
gr.Gallery(label="Key Frames", columns=2)
|
187 |
+
],
|
188 |
title="AI Video Analysis Agent with Gemini",
|
189 |
description=(
|
190 |
+
"Upload an MP4 video to get a detailed summary and key frames using Google's Gemini API. "
|
191 |
+
"This tool analyzes the video content directly and extracts key moments as images. "
|
192 |
"Optionally, provide a query to guide the analysis."
|
193 |
)
|
194 |
)
|
195 |
|
196 |
if __name__ == "__main__":
|
|
|
197 |
iface.launch(share=True)
|