cl_tagger / app.py
cella110n's picture
Upload app.py
d28e386 verified
import gradio as gr
import numpy as np
from PIL import Image # Keep PIL for now, might be needed by helpers implicitly
# from PIL import Image, ImageDraw, ImageFont # No drawing yet
import json
import os
import io
import requests
import matplotlib.pyplot as plt # For visualization
import matplotlib # For backend setting
from huggingface_hub import hf_hub_download
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple
import time
import spaces # Required for @spaces.GPU
import onnxruntime as ort # Use ONNX Runtime
import torch # Keep torch for device check in Tagger
import timm # Restore timm
from safetensors.torch import load_file as safe_load_file # Restore safetensors loading
# MatplotlibのバックエンドをAggに設定 (Keep commented out for now)
# matplotlib.use('Agg')
# --- Data Classes and Helper Functions ---
@dataclass
class LabelData:
names: list[str]
rating: list[np.int64]
general: list[np.int64]
artist: list[np.int64]
character: list[np.int64]
copyright: list[np.int64]
meta: list[np.int64]
quality: list[np.int64]
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
if image.mode not in ["RGB", "RGBA"]:
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
if image.mode == "RGBA":
background = Image.new("RGB", image.size, (255, 255, 255))
background.paste(image, mask=image.split()[3])
image = background
return image
def pil_pad_square(image: Image.Image) -> Image.Image:
width, height = image.size
if width == height: return image
new_size = max(width, height)
new_image = Image.new(image.mode, (new_size, new_size), (255, 255, 255)) # Use image.mode
paste_position = ((new_size - width) // 2, (new_size - height) // 2)
new_image.paste(image, paste_position)
return new_image
def load_tag_mapping(mapping_path):
# Use the implementation from the original app.py as it was confirmed working
with open(mapping_path, 'r', encoding='utf-8') as f: tag_mapping_data = json.load(f)
# Check format compatibility (can be dict of dicts or dict with idx_to_tag/tag_to_category)
if isinstance(tag_mapping_data, dict) and "idx_to_tag" in tag_mapping_data:
idx_to_tag = {int(k): v for k, v in tag_mapping_data["idx_to_tag"].items()}
tag_to_category = tag_mapping_data["tag_to_category"]
elif isinstance(tag_mapping_data, dict):
# Assuming the dict-of-dicts format from previous tests
try:
tag_mapping_data_int_keys = {int(k): v for k, v in tag_mapping_data.items()}
idx_to_tag = {idx: data['tag'] for idx, data in tag_mapping_data_int_keys.items()}
tag_to_category = {data['tag']: data['category'] for data in tag_mapping_data_int_keys.values()}
except (KeyError, ValueError) as e:
raise ValueError(f"Unsupported tag mapping format (dict): {e}. Expected int keys with 'tag' and 'category'.")
else:
raise ValueError("Unsupported tag mapping format: Expected a dictionary.")
names = [None] * (max(idx_to_tag.keys()) + 1)
rating, general, artist, character, copyright, meta, quality = [], [], [], [], [], [], []
for idx, tag in idx_to_tag.items():
if idx >= len(names): names.extend([None] * (idx - len(names) + 1))
names[idx] = tag
category = tag_to_category.get(tag, 'Unknown') # Handle missing category mapping gracefully
idx_int = int(idx)
if category == 'Rating': rating.append(idx_int)
elif category == 'General': general.append(idx_int)
elif category == 'Artist': artist.append(idx_int)
elif category == 'Character': character.append(idx_int)
elif category == 'Copyright': copyright.append(idx_int)
elif category == 'Meta': meta.append(idx_int)
elif category == 'Quality': quality.append(idx_int)
return LabelData(names=names, rating=np.array(rating, dtype=np.int64), general=np.array(general, dtype=np.int64), artist=np.array(artist, dtype=np.int64),
character=np.array(character, dtype=np.int64), copyright=np.array(copyright, dtype=np.int64), meta=np.array(meta, dtype=np.int64), quality=np.array(quality, dtype=np.int64)), idx_to_tag, tag_to_category
def preprocess_image(image: Image.Image, target_size=(448, 448)):
# Adapted from onnx_predict.py's version
image = pil_ensure_rgb(image)
image = pil_pad_square(image)
image_resized = image.resize(target_size, Image.BICUBIC)
img_array = np.array(image_resized, dtype=np.float32) / 255.0
img_array = img_array.transpose(2, 0, 1) # HWC -> CHW
# Assuming model expects RGB based on original code, no BGR conversion here
img_array = img_array[::-1, :, :] # BGR conversion if needed - UNCOMMENTED based on user feedback
mean = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
std = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
img_array = (img_array - mean) / std
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
return image, img_array
# Add get_tags function (from onnx_predict.py)
def get_tags(probs, labels: LabelData, gen_threshold, char_threshold):
result = {
"rating": [],
"general": [],
"character": [],
"copyright": [],
"artist": [],
"meta": [],
"quality": []
}
# Rating (select max)
if len(labels.rating) > 0:
# Ensure indices are within bounds
valid_indices = labels.rating[labels.rating < len(probs)]
if len(valid_indices) > 0:
rating_probs = probs[valid_indices]
if len(rating_probs) > 0:
rating_idx_local = np.argmax(rating_probs)
rating_idx_global = valid_indices[rating_idx_local]
# Check if global index is valid for names list
if rating_idx_global < len(labels.names) and labels.names[rating_idx_global] is not None:
rating_name = labels.names[rating_idx_global]
rating_conf = float(rating_probs[rating_idx_local])
result["rating"].append((rating_name, rating_conf))
else:
print(f"Warning: Invalid global index {rating_idx_global} for rating tag.")
else:
print("Warning: rating_probs became empty after filtering.")
else:
print("Warning: No valid indices found for rating tags within probs length.")
# Quality (select max)
if len(labels.quality) > 0:
valid_indices = labels.quality[labels.quality < len(probs)]
if len(valid_indices) > 0:
quality_probs = probs[valid_indices]
if len(quality_probs) > 0:
quality_idx_local = np.argmax(quality_probs)
quality_idx_global = valid_indices[quality_idx_local]
if quality_idx_global < len(labels.names) and labels.names[quality_idx_global] is not None:
quality_name = labels.names[quality_idx_global]
quality_conf = float(quality_probs[quality_idx_local])
result["quality"].append((quality_name, quality_conf))
else:
print(f"Warning: Invalid global index {quality_idx_global} for quality tag.")
else:
print("Warning: quality_probs became empty after filtering.")
else:
print("Warning: No valid indices found for quality tags within probs length.")
# Threshold-based categories
category_map = {
"general": (labels.general, gen_threshold),
"character": (labels.character, char_threshold),
"copyright": (labels.copyright, char_threshold),
"artist": (labels.artist, char_threshold),
"meta": (labels.meta, gen_threshold) # Use gen_threshold for meta as per original code
}
for category, (indices, threshold) in category_map.items():
if len(indices) > 0:
valid_indices = indices[(indices < len(probs))] # Check index bounds first
if len(valid_indices) > 0:
category_probs = probs[valid_indices]
mask = category_probs >= threshold
selected_indices_local = np.where(mask)[0]
if len(selected_indices_local) > 0:
selected_indices_global = valid_indices[selected_indices_local]
selected_probs = category_probs[selected_indices_local]
for idx_global, prob_val in zip(selected_indices_global, selected_probs):
# Check if global index is valid for names list
if idx_global < len(labels.names) and labels.names[idx_global] is not None:
result[category].append((labels.names[idx_global], float(prob_val)))
else:
print(f"Warning: Invalid global index {idx_global} for {category} tag.")
# else: print(f"No tags found for category '{category}' above threshold {threshold}")
# else: print(f"No valid indices found for category '{category}' within probs length.")
# else: print(f"No indices defined for category '{category}'")
# Sort by probability (descending)
for k in result:
result[k] = sorted(result[k], key=lambda x: x[1], reverse=True)
return result
# Add visualize_predictions function (Adapted from onnx_predict.py and previous versions)
def visualize_predictions(image: Image.Image, predictions: Dict, threshold: float):
# Filter out unwanted meta tags (e.g., id, commentary, request, mismatch)
filtered_meta = []
excluded_meta_patterns = ['id', 'commentary', 'request', 'mismatch']
for tag, prob in predictions.get("meta", []):
if not any(pattern in tag.lower() for pattern in excluded_meta_patterns):
filtered_meta.append((tag, prob))
predictions["meta"] = filtered_meta # Use filtered list for visualization
# --- Plotting Setup ---
plt.rcParams['font.family'] = 'DejaVu Sans'
fig = plt.figure(figsize=(8, 12), dpi=100)
ax_tags = fig.add_subplot(1, 1, 1)
all_tags, all_probs, all_colors = [], [], []
color_map = {
'rating': 'red', 'character': 'blue', 'copyright': 'purple',
'artist': 'orange', 'general': 'green', 'meta': 'gray', 'quality': 'yellow'
}
# Aggregate tags from predictions dictionary
for cat, prefix, color in [
('rating', 'R', color_map['rating']), ('quality', 'Q', color_map['quality']),
('character', 'C', color_map['character']), ('copyright', '©', color_map['copyright']),
('artist', 'A', color_map['artist']), ('general', 'G', color_map['general']),
('meta', 'M', color_map['meta'])
]:
sorted_tags = sorted(predictions.get(cat, []), key=lambda x: x[1], reverse=True)
for tag, prob in sorted_tags:
all_tags.append(f"[{prefix}] {tag.replace('_', ' ')}")
all_probs.append(prob)
all_colors.append(color)
if not all_tags:
ax_tags.text(0.5, 0.5, "No tags found above threshold", ha='center', va='center')
ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})")
ax_tags.axis('off')
else:
sorted_indices = sorted(range(len(all_probs)), key=lambda i: all_probs[i])
all_tags = [all_tags[i] for i in sorted_indices]
all_probs = [all_probs[i] for i in sorted_indices]
all_colors = [all_colors[i] for i in sorted_indices]
num_tags = len(all_tags)
bar_height = min(0.8, max(0.1, 0.8 * (30 / num_tags))) if num_tags > 30 else 0.8
y_positions = np.arange(num_tags)
bars = ax_tags.barh(y_positions, all_probs, height=bar_height, color=all_colors)
ax_tags.set_yticks(y_positions)
ax_tags.set_yticklabels(all_tags)
fontsize = 10 if num_tags <= 40 else 8 if num_tags <= 60 else 6
for lbl in ax_tags.get_yticklabels():
lbl.set_fontsize(fontsize)
for i, (bar, prob) in enumerate(zip(bars, all_probs)):
text_x = min(prob + 0.02, 0.98)
ax_tags.text(text_x, y_positions[i], f"{prob:.3f}", va='center', fontsize=fontsize)
ax_tags.set_xlim(0, 1)
ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})")
from matplotlib.patches import Patch
legend_elements = [
Patch(facecolor=color, label=cat.capitalize())
for cat, color in color_map.items()
if any(t.startswith(f"[{cat[0].upper() if cat!='copyright' else '©'}]") for t in all_tags)
]
if legend_elements:
ax_tags.legend(handles=legend_elements, loc='lower right', fontsize=8)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
plt.close(fig)
buf.seek(0)
return Image.open(buf)
# --- Constants ---
REPO_ID = "celstk/wd-eva02-lora-onnx"
# Model options
MODEL_OPTIONS = {
"cl_eva02_tagger_v1_250426": "cl_eva02_tagger_v1_250426/model.onnx",
"cl_eva02_tagger_v1_250427": "cl_eva02_tagger_v1_250427/model.onnx",
"cl_eva02_tagger_v1_250430": "cl_eva02_tagger_v1_250430/model.onnx",
"cl_eva02_tagger_v1_250502": "cl_eva02_tagger_v1_250503/model.onnx",
"cl_eva02_tagger_v1_250504": "cl_eva02_tagger_v1_250504/model.onnx",
"cl_eva02_tagger_v1_250508": "cl_eva02_tagger_v1_250508/model.onnx"
}
DEFAULT_MODEL = "cl_eva02_tagger_v1_250504"
CACHE_DIR = "./model_cache"
# --- Global variables for paths (initialized at startup) ---
g_onnx_model_path = None
g_tag_mapping_path = None
g_labels_data = None
g_idx_to_tag = None
g_tag_to_category = None
g_current_model = None
# --- Initialization Function ---
def initialize_onnx_paths(model_choice=DEFAULT_MODEL):
global g_onnx_model_path, g_tag_mapping_path, g_labels_data, g_idx_to_tag, g_tag_to_category, g_current_model
if not model_choice in MODEL_OPTIONS:
print(f"Invalid model choice: {model_choice}, falling back to default: {DEFAULT_MODEL}")
model_choice = DEFAULT_MODEL
g_current_model = model_choice
model_dir = model_choice
onnx_filename = MODEL_OPTIONS[model_choice]
tag_mapping_filename = f"{model_dir}/tag_mapping.json"
print(f"Initializing ONNX paths and labels for model: {model_choice}...")
hf_token = os.environ.get("HF_TOKEN")
try:
print(f"Attempting to download ONNX model: {onnx_filename}")
g_onnx_model_path = hf_hub_download(repo_id=REPO_ID, filename=onnx_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False)
print(f"ONNX model path: {g_onnx_model_path}")
print(f"Attempting to download Tag mapping: {tag_mapping_filename}")
g_tag_mapping_path = hf_hub_download(repo_id=REPO_ID, filename=tag_mapping_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False)
print(f"Tag mapping path: {g_tag_mapping_path}")
print("Loading labels from mapping...")
g_labels_data, g_idx_to_tag, g_tag_to_category = load_tag_mapping(g_tag_mapping_path)
print(f"Labels loaded. Count: {len(g_labels_data.names)}")
return True
except Exception as e:
print(f"Error during initialization: {e}")
import traceback; traceback.print_exc()
# Reset globals to force reinitialization
g_onnx_model_path = None
g_tag_mapping_path = None
g_labels_data = None
g_idx_to_tag = None
g_tag_to_category = None
g_current_model = None
# Raise Gradio error to make it visible in the UI
raise gr.Error(f"Initialization failed: {e}. Check logs and HF_TOKEN.")
# Function to handle model change
def change_model(model_choice):
try:
success = initialize_onnx_paths(model_choice)
if success:
return f"Model changed to: {model_choice}"
else:
return "Failed to change model. See logs for details."
except Exception as e:
return f"Error changing model: {str(e)}"
# --- Main Prediction Function (ONNX) ---
@spaces.GPU()
def predict_onnx(image_input, model_choice, gen_threshold, char_threshold, output_mode):
print(f"--- predict_onnx function started (GPU worker) with model {model_choice} ---")
# Ensure current model matches selected model
global g_current_model
if g_current_model != model_choice:
print(f"Model mismatch! Current: {g_current_model}, Selected: {model_choice}. Reinitializing...")
try:
initialize_onnx_paths(model_choice)
except Exception as e:
return f"Error initializing model '{model_choice}': {str(e)}", None
# --- 1. Ensure paths and labels are loaded ---
if g_onnx_model_path is None or g_labels_data is None:
message = "Error: Paths or labels not initialized. Check startup logs."
print(message)
# Return error message and None for the image output
return message, None
# --- 2. Load ONNX Session (inside worker) ---
session = None
try:
print(f"Loading ONNX session from: {g_onnx_model_path}")
available_providers = ort.get_available_providers()
providers = []
if 'CUDAExecutionProvider' in available_providers:
providers.append('CUDAExecutionProvider')
providers.append('CPUExecutionProvider')
print(f"Attempting to load session with providers: {providers}")
session = ort.InferenceSession(g_onnx_model_path, providers=providers)
print(f"ONNX session loaded using: {session.get_providers()[0]}")
except Exception as e:
message = f"Error loading ONNX session in worker: {e}"
print(message)
import traceback; traceback.print_exc()
return message, None
# --- 3. Process Input Image ---
if image_input is None:
return "Please upload an image.", None
print(f"Processing image with thresholds: gen={gen_threshold}, char={char_threshold}")
try:
# Handle different input types (PIL, numpy, URL, file path)
if isinstance(image_input, str):
if image_input.startswith("http"): # URL
response = requests.get(image_input, timeout=10)
response.raise_for_status()
image = Image.open(io.BytesIO(response.content))
elif os.path.exists(image_input): # File path
image = Image.open(image_input)
else:
raise ValueError(f"Invalid image input string: {image_input}")
elif isinstance(image_input, np.ndarray):
image = Image.fromarray(image_input)
elif isinstance(image_input, Image.Image):
image = image_input # Already a PIL image
else:
raise TypeError(f"Unsupported image input type: {type(image_input)}")
# Preprocess the PIL image
original_pil_image, input_tensor = preprocess_image(image)
# Ensure input tensor is float32, as expected by most ONNX models
# (even if the model internally uses float16)
input_tensor = input_tensor.astype(np.float32)
except Exception as e:
message = f"Error processing input image: {e}"
print(message)
return message, None
# --- 4. Run Inference ---
try:
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
print(f"Running inference with input '{input_name}', output '{output_name}'")
start_time = time.time()
outputs = session.run([output_name], {input_name: input_tensor})[0]
inference_time = time.time() - start_time
print(f"Inference completed in {inference_time:.3f} seconds")
# Check for NaN/Inf in outputs
if np.isnan(outputs).any() or np.isinf(outputs).any():
print("Warning: NaN or Inf detected in model output. Clamping...")
outputs = np.nan_to_num(outputs, nan=0.0, posinf=1.0, neginf=0.0) # Clamp to 0-1 range
# Apply sigmoid (outputs are likely logits)
# Use a stable sigmoid implementation
def stable_sigmoid(x):
return 1 / (1 + np.exp(-np.clip(x, -30, 30))) # Clip to avoid overflow
probs = stable_sigmoid(outputs[0]) # Assuming batch size 1
except Exception as e:
message = f"Error during ONNX inference: {e}"
print(message)
import traceback; traceback.print_exc()
return message, None
finally:
# Clean up session if needed (might reduce memory usage between clicks)
del session
# --- 5. Post-process and Format Output ---
try:
print("Post-processing results...")
# Use the correct global variable for labels
predictions = get_tags(probs, g_labels_data, gen_threshold, char_threshold)
# Format output text string
output_tags = []
if predictions.get("rating"): output_tags.append(predictions["rating"][0][0].replace("_", " "))
if predictions.get("quality"): output_tags.append(predictions["quality"][0][0].replace("_", " "))
# Add other categories, respecting order and filtering meta if needed
for category in ["artist", "character", "copyright", "general", "meta"]:
tags_in_category = predictions.get(category, [])
for tag, prob in tags_in_category:
# Basic meta tag filtering for text output
if category == "meta" and any(p in tag.lower() for p in ['id', 'commentary', 'request', 'mismatch']):
continue
output_tags.append(tag.replace("_", " "))
output_text = ", ".join(output_tags)
# Generate visualization if requested
viz_image = None
if output_mode == "Tags + Visualization":
print("Generating visualization...")
# Pass the correct threshold for display title (can pass both if needed)
# For simplicity, passing gen_threshold as a representative value
viz_image = visualize_predictions(original_pil_image, predictions, gen_threshold)
print("Visualization generated.")
else:
print("Visualization skipped.")
print("Prediction complete.")
return output_text, viz_image
except Exception as e:
message = f"Error during post-processing: {e}"
print(message)
import traceback; traceback.print_exc()
return message, None
# --- Gradio Interface Definition (Full ONNX Version) ---
css = """
.gradio-container { font-family: 'IBM Plex Sans', sans-serif; }
footer { display: none !important; }
.gr-prose { max-width: 100% !important; }
"""
# js = """ /* Keep existing JS */ """ # No JS needed currently
with gr.Blocks(css=css) as demo:
gr.Markdown("# CL EVA02 ONNX Tagger")
gr.Markdown("Upload an image or paste an image URL to predict tags using the CL EVA02 Tagger model (ONNX), fine-tuned from [SmilingWolf/wd-eva02-large-tagger-v3](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3).")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image")
model_choice = gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
value=DEFAULT_MODEL,
label="Model Version",
interactive=True
)
gen_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.55, label="General/Meta Tag Threshold")
char_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.60, label="Character/Copyright/Artist Tag Threshold")
output_mode = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", label="Output Mode")
predict_button = gr.Button("Predict", variant="primary")
with gr.Column(scale=1):
output_tags = gr.Textbox(label="Predicted Tags", lines=10, interactive=False)
output_visualization = gr.Image(type="pil", label="Prediction Visualization", interactive=False)
# Handle model change
model_status = gr.Textbox(label="Model Status", interactive=False, visible=False)
model_choice.change(
fn=change_model,
inputs=[model_choice],
outputs=[model_status]
)
gr.Examples(
examples=[
["https://pbs.twimg.com/media/GXBXsRvbQAAg1kp.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"],
["https://pbs.twimg.com/media/GjlX0gibcAA4EJ4.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags Only"],
["https://pbs.twimg.com/media/Gj4nQbjbEAATeoH.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"],
["https://pbs.twimg.com/media/GkbtX0GaoAMlUZt.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"]
],
inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode],
outputs=[output_tags, output_visualization],
fn=predict_onnx, # Use the ONNX prediction function
cache_examples=False # Disable caching for examples during testing
)
predict_button.click(
fn=predict_onnx, # Use the ONNX prediction function
inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode],
outputs=[output_tags, output_visualization]
)
# --- Main Block ---
if __name__ == "__main__":
if not os.environ.get("HF_TOKEN"): print("Warning: HF_TOKEN environment variable not set.")
# Initialize paths and labels at startup (with default model)
initialize_onnx_paths(DEFAULT_MODEL)
# Launch Gradio app
demo.launch(share=True)