File size: 26,306 Bytes
97cfcda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d84863c
d28e386
97cfcda
d28e386
97cfcda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import gradio as gr
import numpy as np
from PIL import Image # Keep PIL for now, might be needed by helpers implicitly
# from PIL import Image, ImageDraw, ImageFont # No drawing yet
import json
import os
import io
import requests
import matplotlib.pyplot as plt # For visualization
import matplotlib # For backend setting
from huggingface_hub import hf_hub_download
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple
import time
import spaces # Required for @spaces.GPU
import onnxruntime as ort # Use ONNX Runtime

import torch # Keep torch for device check in Tagger
import timm # Restore timm
from safetensors.torch import load_file as safe_load_file # Restore safetensors loading

# MatplotlibのバックエンドをAggに設定 (Keep commented out for now)
# matplotlib.use('Agg')

# --- Data Classes and Helper Functions ---
@dataclass
class LabelData:
    names: list[str]
    rating: list[np.int64]
    general: list[np.int64]
    artist: list[np.int64]
    character: list[np.int64]
    copyright: list[np.int64]
    meta: list[np.int64]
    quality: list[np.int64]

def pil_ensure_rgb(image: Image.Image) -> Image.Image:
    if image.mode not in ["RGB", "RGBA"]:
        image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
    if image.mode == "RGBA":
        background = Image.new("RGB", image.size, (255, 255, 255))
        background.paste(image, mask=image.split()[3])
        image = background
    return image

def pil_pad_square(image: Image.Image) -> Image.Image:
    width, height = image.size
    if width == height: return image
    new_size = max(width, height)
    new_image = Image.new(image.mode, (new_size, new_size), (255, 255, 255)) # Use image.mode
    paste_position = ((new_size - width) // 2, (new_size - height) // 2)
    new_image.paste(image, paste_position)
    return new_image

def load_tag_mapping(mapping_path):
    # Use the implementation from the original app.py as it was confirmed working
    with open(mapping_path, 'r', encoding='utf-8') as f: tag_mapping_data = json.load(f)
    # Check format compatibility (can be dict of dicts or dict with idx_to_tag/tag_to_category)
    if isinstance(tag_mapping_data, dict) and "idx_to_tag" in tag_mapping_data:
        idx_to_tag = {int(k): v for k, v in tag_mapping_data["idx_to_tag"].items()}
        tag_to_category = tag_mapping_data["tag_to_category"]
    elif isinstance(tag_mapping_data, dict):
        # Assuming the dict-of-dicts format from previous tests
        try:
             tag_mapping_data_int_keys = {int(k): v for k, v in tag_mapping_data.items()}
             idx_to_tag = {idx: data['tag'] for idx, data in tag_mapping_data_int_keys.items()}
             tag_to_category = {data['tag']: data['category'] for data in tag_mapping_data_int_keys.values()}
        except (KeyError, ValueError) as e:
             raise ValueError(f"Unsupported tag mapping format (dict): {e}. Expected int keys with 'tag' and 'category'.")
    else:
        raise ValueError("Unsupported tag mapping format: Expected a dictionary.")

    names = [None] * (max(idx_to_tag.keys()) + 1)
    rating, general, artist, character, copyright, meta, quality = [], [], [], [], [], [], []
    for idx, tag in idx_to_tag.items():
        if idx >= len(names): names.extend([None] * (idx - len(names) + 1))
        names[idx] = tag
        category = tag_to_category.get(tag, 'Unknown') # Handle missing category mapping gracefully
        idx_int = int(idx)
        if category == 'Rating': rating.append(idx_int)
        elif category == 'General': general.append(idx_int)
        elif category == 'Artist': artist.append(idx_int)
        elif category == 'Character': character.append(idx_int)
        elif category == 'Copyright': copyright.append(idx_int)
        elif category == 'Meta': meta.append(idx_int)
        elif category == 'Quality': quality.append(idx_int)

    return LabelData(names=names, rating=np.array(rating, dtype=np.int64), general=np.array(general, dtype=np.int64), artist=np.array(artist, dtype=np.int64),
                     character=np.array(character, dtype=np.int64), copyright=np.array(copyright, dtype=np.int64), meta=np.array(meta, dtype=np.int64), quality=np.array(quality, dtype=np.int64)), idx_to_tag, tag_to_category

def preprocess_image(image: Image.Image, target_size=(448, 448)):
    # Adapted from onnx_predict.py's version
    image = pil_ensure_rgb(image)
    image = pil_pad_square(image)
    image_resized = image.resize(target_size, Image.BICUBIC)
    img_array = np.array(image_resized, dtype=np.float32) / 255.0
    img_array = img_array.transpose(2, 0, 1) # HWC -> CHW
    # Assuming model expects RGB based on original code, no BGR conversion here
    img_array = img_array[::-1, :, :] # BGR conversion if needed - UNCOMMENTED based on user feedback
    mean = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
    std = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
    img_array = (img_array - mean) / std
    img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
    return image, img_array

# Add get_tags function (from onnx_predict.py)
def get_tags(probs, labels: LabelData, gen_threshold, char_threshold):
    result = {
        "rating": [],
        "general": [],
        "character": [],
        "copyright": [],
        "artist": [],
        "meta": [],
        "quality": []
    }
    # Rating (select max)
    if len(labels.rating) > 0:
        # Ensure indices are within bounds
        valid_indices = labels.rating[labels.rating < len(probs)]
        if len(valid_indices) > 0:
            rating_probs = probs[valid_indices]
            if len(rating_probs) > 0:
                rating_idx_local = np.argmax(rating_probs)
                rating_idx_global = valid_indices[rating_idx_local]
                # Check if global index is valid for names list
                if rating_idx_global < len(labels.names) and labels.names[rating_idx_global] is not None:
                    rating_name = labels.names[rating_idx_global]
                    rating_conf = float(rating_probs[rating_idx_local])
                    result["rating"].append((rating_name, rating_conf))
                else:
                    print(f"Warning: Invalid global index {rating_idx_global} for rating tag.")
            else:
                 print("Warning: rating_probs became empty after filtering.")
        else:
            print("Warning: No valid indices found for rating tags within probs length.")

    # Quality (select max)
    if len(labels.quality) > 0:
        valid_indices = labels.quality[labels.quality < len(probs)]
        if len(valid_indices) > 0:
            quality_probs = probs[valid_indices]
            if len(quality_probs) > 0:
                quality_idx_local = np.argmax(quality_probs)
                quality_idx_global = valid_indices[quality_idx_local]
                if quality_idx_global < len(labels.names) and labels.names[quality_idx_global] is not None:
                    quality_name = labels.names[quality_idx_global]
                    quality_conf = float(quality_probs[quality_idx_local])
                    result["quality"].append((quality_name, quality_conf))
                else:
                     print(f"Warning: Invalid global index {quality_idx_global} for quality tag.")
            else:
                print("Warning: quality_probs became empty after filtering.")
        else:
            print("Warning: No valid indices found for quality tags within probs length.")

    # Threshold-based categories
    category_map = {
        "general": (labels.general, gen_threshold),
        "character": (labels.character, char_threshold),
        "copyright": (labels.copyright, char_threshold),
        "artist": (labels.artist, char_threshold),
        "meta": (labels.meta, gen_threshold) # Use gen_threshold for meta as per original code
    }
    for category, (indices, threshold) in category_map.items():
        if len(indices) > 0:
            valid_indices = indices[(indices < len(probs))] # Check index bounds first
            if len(valid_indices) > 0:
                category_probs = probs[valid_indices]
                mask = category_probs >= threshold
                selected_indices_local = np.where(mask)[0]
                if len(selected_indices_local) > 0:
                    selected_indices_global = valid_indices[selected_indices_local]
                    selected_probs = category_probs[selected_indices_local]
                    for idx_global, prob_val in zip(selected_indices_global, selected_probs):
                        # Check if global index is valid for names list
                        if idx_global < len(labels.names) and labels.names[idx_global] is not None:
                             result[category].append((labels.names[idx_global], float(prob_val)))
                        else:
                             print(f"Warning: Invalid global index {idx_global} for {category} tag.")
                # else: print(f"No tags found for category '{category}' above threshold {threshold}")
            # else: print(f"No valid indices found for category '{category}' within probs length.")
        # else: print(f"No indices defined for category '{category}'")

    # Sort by probability (descending)
    for k in result:
        result[k] = sorted(result[k], key=lambda x: x[1], reverse=True)
    return result

# Add visualize_predictions function (Adapted from onnx_predict.py and previous versions)
def visualize_predictions(image: Image.Image, predictions: Dict, threshold: float):
    # Filter out unwanted meta tags (e.g., id, commentary, request, mismatch)
    filtered_meta = []
    excluded_meta_patterns = ['id', 'commentary', 'request', 'mismatch']
    for tag, prob in predictions.get("meta", []):
        if not any(pattern in tag.lower() for pattern in excluded_meta_patterns):
            filtered_meta.append((tag, prob))
    predictions["meta"] = filtered_meta  # Use filtered list for visualization

    # --- Plotting Setup ---
    plt.rcParams['font.family'] = 'DejaVu Sans'
    fig = plt.figure(figsize=(8, 12), dpi=100)
    ax_tags = fig.add_subplot(1, 1, 1)

    all_tags, all_probs, all_colors = [], [], []
    color_map = {
        'rating': 'red', 'character': 'blue', 'copyright': 'purple',
        'artist': 'orange', 'general': 'green', 'meta': 'gray', 'quality': 'yellow'
    }

    # Aggregate tags from predictions dictionary
    for cat, prefix, color in [
        ('rating', 'R', color_map['rating']), ('quality', 'Q', color_map['quality']),
        ('character', 'C', color_map['character']), ('copyright', '©', color_map['copyright']),
        ('artist', 'A', color_map['artist']), ('general', 'G', color_map['general']),
        ('meta', 'M', color_map['meta'])
    ]:
        sorted_tags = sorted(predictions.get(cat, []), key=lambda x: x[1], reverse=True)
        for tag, prob in sorted_tags:
            all_tags.append(f"[{prefix}] {tag.replace('_', ' ')}")
            all_probs.append(prob)
            all_colors.append(color)

    if not all_tags:
        ax_tags.text(0.5, 0.5, "No tags found above threshold", ha='center', va='center')
        ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})")
        ax_tags.axis('off')
    else:
        sorted_indices = sorted(range(len(all_probs)), key=lambda i: all_probs[i])
        all_tags = [all_tags[i] for i in sorted_indices]
        all_probs = [all_probs[i] for i in sorted_indices]
        all_colors = [all_colors[i] for i in sorted_indices]

        num_tags = len(all_tags)
        bar_height = min(0.8, max(0.1, 0.8 * (30 / num_tags))) if num_tags > 30 else 0.8
        y_positions = np.arange(num_tags)

        bars = ax_tags.barh(y_positions, all_probs, height=bar_height, color=all_colors)
        ax_tags.set_yticks(y_positions)
        ax_tags.set_yticklabels(all_tags)

        fontsize = 10 if num_tags <= 40 else 8 if num_tags <= 60 else 6
        for lbl in ax_tags.get_yticklabels():
            lbl.set_fontsize(fontsize)

        for i, (bar, prob) in enumerate(zip(bars, all_probs)):
            text_x = min(prob + 0.02, 0.98)
            ax_tags.text(text_x, y_positions[i], f"{prob:.3f}", va='center', fontsize=fontsize)

        ax_tags.set_xlim(0, 1)
        ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})")

        from matplotlib.patches import Patch
        legend_elements = [
            Patch(facecolor=color, label=cat.capitalize())
            for cat, color in color_map.items()
            if any(t.startswith(f"[{cat[0].upper() if cat!='copyright' else '©'}]") for t in all_tags)
        ]
        if legend_elements:
            ax_tags.legend(handles=legend_elements, loc='lower right', fontsize=8)

    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(buf, format='png', dpi=100)
    plt.close(fig)
    buf.seek(0)
    return Image.open(buf)

# --- Constants ---
REPO_ID = "celstk/wd-eva02-lora-onnx"
# Model options
MODEL_OPTIONS = {
    "cl_eva02_tagger_v1_250426": "cl_eva02_tagger_v1_250426/model.onnx",
    "cl_eva02_tagger_v1_250427": "cl_eva02_tagger_v1_250427/model.onnx",
    "cl_eva02_tagger_v1_250430": "cl_eva02_tagger_v1_250430/model.onnx",
    "cl_eva02_tagger_v1_250502": "cl_eva02_tagger_v1_250503/model.onnx",
    "cl_eva02_tagger_v1_250504": "cl_eva02_tagger_v1_250504/model.onnx",
    "cl_eva02_tagger_v1_250508": "cl_eva02_tagger_v1_250508/model.onnx"
}
DEFAULT_MODEL = "cl_eva02_tagger_v1_250504"
CACHE_DIR = "./model_cache"

# --- Global variables for paths (initialized at startup) ---
g_onnx_model_path = None
g_tag_mapping_path = None
g_labels_data = None
g_idx_to_tag = None
g_tag_to_category = None
g_current_model = None

# --- Initialization Function ---
def initialize_onnx_paths(model_choice=DEFAULT_MODEL):
    global g_onnx_model_path, g_tag_mapping_path, g_labels_data, g_idx_to_tag, g_tag_to_category, g_current_model
    
    if not model_choice in MODEL_OPTIONS:
        print(f"Invalid model choice: {model_choice}, falling back to default: {DEFAULT_MODEL}")
        model_choice = DEFAULT_MODEL
    
    g_current_model = model_choice
    model_dir = model_choice
    onnx_filename = MODEL_OPTIONS[model_choice]
    tag_mapping_filename = f"{model_dir}/tag_mapping.json"
    
    print(f"Initializing ONNX paths and labels for model: {model_choice}...")
    hf_token = os.environ.get("HF_TOKEN")
    try:
        print(f"Attempting to download ONNX model: {onnx_filename}")
        g_onnx_model_path = hf_hub_download(repo_id=REPO_ID, filename=onnx_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False)
        print(f"ONNX model path: {g_onnx_model_path}")

        print(f"Attempting to download Tag mapping: {tag_mapping_filename}")
        g_tag_mapping_path = hf_hub_download(repo_id=REPO_ID, filename=tag_mapping_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False)
        print(f"Tag mapping path: {g_tag_mapping_path}")

        print("Loading labels from mapping...")
        g_labels_data, g_idx_to_tag, g_tag_to_category = load_tag_mapping(g_tag_mapping_path)
        print(f"Labels loaded. Count: {len(g_labels_data.names)}")
        
        return True

    except Exception as e:
        print(f"Error during initialization: {e}")
        import traceback; traceback.print_exc()
        # Reset globals to force reinitialization
        g_onnx_model_path = None
        g_tag_mapping_path = None
        g_labels_data = None
        g_idx_to_tag = None
        g_tag_to_category = None
        g_current_model = None
        # Raise Gradio error to make it visible in the UI
        raise gr.Error(f"Initialization failed: {e}. Check logs and HF_TOKEN.")

# Function to handle model change
def change_model(model_choice):
    try:
        success = initialize_onnx_paths(model_choice)
        if success:
            return f"Model changed to: {model_choice}"
        else:
            return "Failed to change model. See logs for details."
    except Exception as e:
        return f"Error changing model: {str(e)}"
        
# --- Main Prediction Function (ONNX) ---
@spaces.GPU()
def predict_onnx(image_input, model_choice, gen_threshold, char_threshold, output_mode):
    print(f"--- predict_onnx function started (GPU worker) with model {model_choice} ---")
    
    # Ensure current model matches selected model
    global g_current_model
    if g_current_model != model_choice:
        print(f"Model mismatch! Current: {g_current_model}, Selected: {model_choice}. Reinitializing...")
        try:
            initialize_onnx_paths(model_choice)
        except Exception as e:
            return f"Error initializing model '{model_choice}': {str(e)}", None
    
    # --- 1. Ensure paths and labels are loaded ---
    if g_onnx_model_path is None or g_labels_data is None:
        message = "Error: Paths or labels not initialized. Check startup logs."
        print(message)
        # Return error message and None for the image output
        return message, None

    # --- 2. Load ONNX Session (inside worker) ---
    session = None
    try:
        print(f"Loading ONNX session from: {g_onnx_model_path}")
        available_providers = ort.get_available_providers()
        providers = []
        if 'CUDAExecutionProvider' in available_providers:
            providers.append('CUDAExecutionProvider')
        providers.append('CPUExecutionProvider')
        print(f"Attempting to load session with providers: {providers}")
        session = ort.InferenceSession(g_onnx_model_path, providers=providers)
        print(f"ONNX session loaded using: {session.get_providers()[0]}")
    except Exception as e:
        message = f"Error loading ONNX session in worker: {e}"
        print(message)
        import traceback; traceback.print_exc()
        return message, None

    # --- 3. Process Input Image ---
    if image_input is None:
        return "Please upload an image.", None

    print(f"Processing image with thresholds: gen={gen_threshold}, char={char_threshold}")
    try:
        # Handle different input types (PIL, numpy, URL, file path)
        if isinstance(image_input, str):
            if image_input.startswith("http"): # URL
                response = requests.get(image_input, timeout=10)
                response.raise_for_status()
                image = Image.open(io.BytesIO(response.content))
            elif os.path.exists(image_input): # File path
                image = Image.open(image_input)
            else:
                 raise ValueError(f"Invalid image input string: {image_input}")
        elif isinstance(image_input, np.ndarray):
             image = Image.fromarray(image_input)
        elif isinstance(image_input, Image.Image):
             image = image_input # Already a PIL image
        else:
             raise TypeError(f"Unsupported image input type: {type(image_input)}")

        # Preprocess the PIL image
        original_pil_image, input_tensor = preprocess_image(image)

        # Ensure input tensor is float32, as expected by most ONNX models
        # (even if the model internally uses float16)
        input_tensor = input_tensor.astype(np.float32)

    except Exception as e:
        message = f"Error processing input image: {e}"
        print(message)
        return message, None

    # --- 4. Run Inference ---
    try:
        input_name = session.get_inputs()[0].name
        output_name = session.get_outputs()[0].name
        print(f"Running inference with input '{input_name}', output '{output_name}'")
        start_time = time.time()
        outputs = session.run([output_name], {input_name: input_tensor})[0]
        inference_time = time.time() - start_time
        print(f"Inference completed in {inference_time:.3f} seconds")

        # Check for NaN/Inf in outputs
        if np.isnan(outputs).any() or np.isinf(outputs).any():
            print("Warning: NaN or Inf detected in model output. Clamping...")
            outputs = np.nan_to_num(outputs, nan=0.0, posinf=1.0, neginf=0.0) # Clamp to 0-1 range

        # Apply sigmoid (outputs are likely logits)
        # Use a stable sigmoid implementation
        def stable_sigmoid(x):
            return 1 / (1 + np.exp(-np.clip(x, -30, 30))) # Clip to avoid overflow
        probs = stable_sigmoid(outputs[0]) # Assuming batch size 1

    except Exception as e:
        message = f"Error during ONNX inference: {e}"
        print(message)
        import traceback; traceback.print_exc()
        return message, None
    finally:
        # Clean up session if needed (might reduce memory usage between clicks)
        del session

    # --- 5. Post-process and Format Output ---
    try:
        print("Post-processing results...")
        # Use the correct global variable for labels
        predictions = get_tags(probs, g_labels_data, gen_threshold, char_threshold)

        # Format output text string
        output_tags = []
        if predictions.get("rating"): output_tags.append(predictions["rating"][0][0].replace("_", " "))
        if predictions.get("quality"): output_tags.append(predictions["quality"][0][0].replace("_", " "))
        # Add other categories, respecting order and filtering meta if needed
        for category in ["artist", "character", "copyright", "general", "meta"]:
            tags_in_category = predictions.get(category, [])
            for tag, prob in tags_in_category:
                # Basic meta tag filtering for text output
                if category == "meta" and any(p in tag.lower() for p in ['id', 'commentary', 'request', 'mismatch']):
                    continue
                output_tags.append(tag.replace("_", " "))
        output_text = ", ".join(output_tags)

        # Generate visualization if requested
        viz_image = None
        if output_mode == "Tags + Visualization":
            print("Generating visualization...")
            # Pass the correct threshold for display title (can pass both if needed)
            # For simplicity, passing gen_threshold as a representative value
            viz_image = visualize_predictions(original_pil_image, predictions, gen_threshold)
            print("Visualization generated.")
        else:
            print("Visualization skipped.")

        print("Prediction complete.")
        return output_text, viz_image

    except Exception as e:
        message = f"Error during post-processing: {e}"
        print(message)
        import traceback; traceback.print_exc()
        return message, None

# --- Gradio Interface Definition (Full ONNX Version) ---
css = """

.gradio-container { font-family: 'IBM Plex Sans', sans-serif; }

footer { display: none !important; }

.gr-prose { max-width: 100% !important; }

"""
# js = """ /* Keep existing JS */ """ # No JS needed currently

with gr.Blocks(css=css) as demo:
    gr.Markdown("# CL EVA02 ONNX Tagger")
    gr.Markdown("Upload an image or paste an image URL to predict tags using the CL EVA02 Tagger model (ONNX), fine-tuned from [SmilingWolf/wd-eva02-large-tagger-v3](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3).")
    
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image")
            model_choice = gr.Dropdown(
                choices=list(MODEL_OPTIONS.keys()), 
                value=DEFAULT_MODEL, 
                label="Model Version",
                interactive=True
            )
            gen_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.55, label="General/Meta Tag Threshold")
            char_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.60, label="Character/Copyright/Artist Tag Threshold")
            output_mode = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", label="Output Mode")
            predict_button = gr.Button("Predict", variant="primary")
        with gr.Column(scale=1):
            output_tags = gr.Textbox(label="Predicted Tags", lines=10, interactive=False)
            output_visualization = gr.Image(type="pil", label="Prediction Visualization", interactive=False)
    
    # Handle model change
    model_status = gr.Textbox(label="Model Status", interactive=False, visible=False)
    model_choice.change(
        fn=change_model,
        inputs=[model_choice],
        outputs=[model_status]
    )
    
    gr.Examples(
        examples=[
            ["https://pbs.twimg.com/media/GXBXsRvbQAAg1kp.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"],
            ["https://pbs.twimg.com/media/GjlX0gibcAA4EJ4.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags Only"],
            ["https://pbs.twimg.com/media/Gj4nQbjbEAATeoH.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"],
            ["https://pbs.twimg.com/media/GkbtX0GaoAMlUZt.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"]
        ],
        inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode],
        outputs=[output_tags, output_visualization],
        fn=predict_onnx, # Use the ONNX prediction function
        cache_examples=False # Disable caching for examples during testing
    )
    predict_button.click(
        fn=predict_onnx, # Use the ONNX prediction function
        inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode],
        outputs=[output_tags, output_visualization]
    )

# --- Main Block ---
if __name__ == "__main__":
    if not os.environ.get("HF_TOKEN"): print("Warning: HF_TOKEN environment variable not set.")
    # Initialize paths and labels at startup (with default model)
    initialize_onnx_paths(DEFAULT_MODEL)
    # Launch Gradio app
    demo.launch(share=True)