File size: 26,306 Bytes
97cfcda d84863c d28e386 97cfcda d28e386 97cfcda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import gradio as gr
import numpy as np
from PIL import Image # Keep PIL for now, might be needed by helpers implicitly
# from PIL import Image, ImageDraw, ImageFont # No drawing yet
import json
import os
import io
import requests
import matplotlib.pyplot as plt # For visualization
import matplotlib # For backend setting
from huggingface_hub import hf_hub_download
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple
import time
import spaces # Required for @spaces.GPU
import onnxruntime as ort # Use ONNX Runtime
import torch # Keep torch for device check in Tagger
import timm # Restore timm
from safetensors.torch import load_file as safe_load_file # Restore safetensors loading
# MatplotlibのバックエンドをAggに設定 (Keep commented out for now)
# matplotlib.use('Agg')
# --- Data Classes and Helper Functions ---
@dataclass
class LabelData:
names: list[str]
rating: list[np.int64]
general: list[np.int64]
artist: list[np.int64]
character: list[np.int64]
copyright: list[np.int64]
meta: list[np.int64]
quality: list[np.int64]
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
if image.mode not in ["RGB", "RGBA"]:
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
if image.mode == "RGBA":
background = Image.new("RGB", image.size, (255, 255, 255))
background.paste(image, mask=image.split()[3])
image = background
return image
def pil_pad_square(image: Image.Image) -> Image.Image:
width, height = image.size
if width == height: return image
new_size = max(width, height)
new_image = Image.new(image.mode, (new_size, new_size), (255, 255, 255)) # Use image.mode
paste_position = ((new_size - width) // 2, (new_size - height) // 2)
new_image.paste(image, paste_position)
return new_image
def load_tag_mapping(mapping_path):
# Use the implementation from the original app.py as it was confirmed working
with open(mapping_path, 'r', encoding='utf-8') as f: tag_mapping_data = json.load(f)
# Check format compatibility (can be dict of dicts or dict with idx_to_tag/tag_to_category)
if isinstance(tag_mapping_data, dict) and "idx_to_tag" in tag_mapping_data:
idx_to_tag = {int(k): v for k, v in tag_mapping_data["idx_to_tag"].items()}
tag_to_category = tag_mapping_data["tag_to_category"]
elif isinstance(tag_mapping_data, dict):
# Assuming the dict-of-dicts format from previous tests
try:
tag_mapping_data_int_keys = {int(k): v for k, v in tag_mapping_data.items()}
idx_to_tag = {idx: data['tag'] for idx, data in tag_mapping_data_int_keys.items()}
tag_to_category = {data['tag']: data['category'] for data in tag_mapping_data_int_keys.values()}
except (KeyError, ValueError) as e:
raise ValueError(f"Unsupported tag mapping format (dict): {e}. Expected int keys with 'tag' and 'category'.")
else:
raise ValueError("Unsupported tag mapping format: Expected a dictionary.")
names = [None] * (max(idx_to_tag.keys()) + 1)
rating, general, artist, character, copyright, meta, quality = [], [], [], [], [], [], []
for idx, tag in idx_to_tag.items():
if idx >= len(names): names.extend([None] * (idx - len(names) + 1))
names[idx] = tag
category = tag_to_category.get(tag, 'Unknown') # Handle missing category mapping gracefully
idx_int = int(idx)
if category == 'Rating': rating.append(idx_int)
elif category == 'General': general.append(idx_int)
elif category == 'Artist': artist.append(idx_int)
elif category == 'Character': character.append(idx_int)
elif category == 'Copyright': copyright.append(idx_int)
elif category == 'Meta': meta.append(idx_int)
elif category == 'Quality': quality.append(idx_int)
return LabelData(names=names, rating=np.array(rating, dtype=np.int64), general=np.array(general, dtype=np.int64), artist=np.array(artist, dtype=np.int64),
character=np.array(character, dtype=np.int64), copyright=np.array(copyright, dtype=np.int64), meta=np.array(meta, dtype=np.int64), quality=np.array(quality, dtype=np.int64)), idx_to_tag, tag_to_category
def preprocess_image(image: Image.Image, target_size=(448, 448)):
# Adapted from onnx_predict.py's version
image = pil_ensure_rgb(image)
image = pil_pad_square(image)
image_resized = image.resize(target_size, Image.BICUBIC)
img_array = np.array(image_resized, dtype=np.float32) / 255.0
img_array = img_array.transpose(2, 0, 1) # HWC -> CHW
# Assuming model expects RGB based on original code, no BGR conversion here
img_array = img_array[::-1, :, :] # BGR conversion if needed - UNCOMMENTED based on user feedback
mean = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
std = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
img_array = (img_array - mean) / std
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
return image, img_array
# Add get_tags function (from onnx_predict.py)
def get_tags(probs, labels: LabelData, gen_threshold, char_threshold):
result = {
"rating": [],
"general": [],
"character": [],
"copyright": [],
"artist": [],
"meta": [],
"quality": []
}
# Rating (select max)
if len(labels.rating) > 0:
# Ensure indices are within bounds
valid_indices = labels.rating[labels.rating < len(probs)]
if len(valid_indices) > 0:
rating_probs = probs[valid_indices]
if len(rating_probs) > 0:
rating_idx_local = np.argmax(rating_probs)
rating_idx_global = valid_indices[rating_idx_local]
# Check if global index is valid for names list
if rating_idx_global < len(labels.names) and labels.names[rating_idx_global] is not None:
rating_name = labels.names[rating_idx_global]
rating_conf = float(rating_probs[rating_idx_local])
result["rating"].append((rating_name, rating_conf))
else:
print(f"Warning: Invalid global index {rating_idx_global} for rating tag.")
else:
print("Warning: rating_probs became empty after filtering.")
else:
print("Warning: No valid indices found for rating tags within probs length.")
# Quality (select max)
if len(labels.quality) > 0:
valid_indices = labels.quality[labels.quality < len(probs)]
if len(valid_indices) > 0:
quality_probs = probs[valid_indices]
if len(quality_probs) > 0:
quality_idx_local = np.argmax(quality_probs)
quality_idx_global = valid_indices[quality_idx_local]
if quality_idx_global < len(labels.names) and labels.names[quality_idx_global] is not None:
quality_name = labels.names[quality_idx_global]
quality_conf = float(quality_probs[quality_idx_local])
result["quality"].append((quality_name, quality_conf))
else:
print(f"Warning: Invalid global index {quality_idx_global} for quality tag.")
else:
print("Warning: quality_probs became empty after filtering.")
else:
print("Warning: No valid indices found for quality tags within probs length.")
# Threshold-based categories
category_map = {
"general": (labels.general, gen_threshold),
"character": (labels.character, char_threshold),
"copyright": (labels.copyright, char_threshold),
"artist": (labels.artist, char_threshold),
"meta": (labels.meta, gen_threshold) # Use gen_threshold for meta as per original code
}
for category, (indices, threshold) in category_map.items():
if len(indices) > 0:
valid_indices = indices[(indices < len(probs))] # Check index bounds first
if len(valid_indices) > 0:
category_probs = probs[valid_indices]
mask = category_probs >= threshold
selected_indices_local = np.where(mask)[0]
if len(selected_indices_local) > 0:
selected_indices_global = valid_indices[selected_indices_local]
selected_probs = category_probs[selected_indices_local]
for idx_global, prob_val in zip(selected_indices_global, selected_probs):
# Check if global index is valid for names list
if idx_global < len(labels.names) and labels.names[idx_global] is not None:
result[category].append((labels.names[idx_global], float(prob_val)))
else:
print(f"Warning: Invalid global index {idx_global} for {category} tag.")
# else: print(f"No tags found for category '{category}' above threshold {threshold}")
# else: print(f"No valid indices found for category '{category}' within probs length.")
# else: print(f"No indices defined for category '{category}'")
# Sort by probability (descending)
for k in result:
result[k] = sorted(result[k], key=lambda x: x[1], reverse=True)
return result
# Add visualize_predictions function (Adapted from onnx_predict.py and previous versions)
def visualize_predictions(image: Image.Image, predictions: Dict, threshold: float):
# Filter out unwanted meta tags (e.g., id, commentary, request, mismatch)
filtered_meta = []
excluded_meta_patterns = ['id', 'commentary', 'request', 'mismatch']
for tag, prob in predictions.get("meta", []):
if not any(pattern in tag.lower() for pattern in excluded_meta_patterns):
filtered_meta.append((tag, prob))
predictions["meta"] = filtered_meta # Use filtered list for visualization
# --- Plotting Setup ---
plt.rcParams['font.family'] = 'DejaVu Sans'
fig = plt.figure(figsize=(8, 12), dpi=100)
ax_tags = fig.add_subplot(1, 1, 1)
all_tags, all_probs, all_colors = [], [], []
color_map = {
'rating': 'red', 'character': 'blue', 'copyright': 'purple',
'artist': 'orange', 'general': 'green', 'meta': 'gray', 'quality': 'yellow'
}
# Aggregate tags from predictions dictionary
for cat, prefix, color in [
('rating', 'R', color_map['rating']), ('quality', 'Q', color_map['quality']),
('character', 'C', color_map['character']), ('copyright', '©', color_map['copyright']),
('artist', 'A', color_map['artist']), ('general', 'G', color_map['general']),
('meta', 'M', color_map['meta'])
]:
sorted_tags = sorted(predictions.get(cat, []), key=lambda x: x[1], reverse=True)
for tag, prob in sorted_tags:
all_tags.append(f"[{prefix}] {tag.replace('_', ' ')}")
all_probs.append(prob)
all_colors.append(color)
if not all_tags:
ax_tags.text(0.5, 0.5, "No tags found above threshold", ha='center', va='center')
ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})")
ax_tags.axis('off')
else:
sorted_indices = sorted(range(len(all_probs)), key=lambda i: all_probs[i])
all_tags = [all_tags[i] for i in sorted_indices]
all_probs = [all_probs[i] for i in sorted_indices]
all_colors = [all_colors[i] for i in sorted_indices]
num_tags = len(all_tags)
bar_height = min(0.8, max(0.1, 0.8 * (30 / num_tags))) if num_tags > 30 else 0.8
y_positions = np.arange(num_tags)
bars = ax_tags.barh(y_positions, all_probs, height=bar_height, color=all_colors)
ax_tags.set_yticks(y_positions)
ax_tags.set_yticklabels(all_tags)
fontsize = 10 if num_tags <= 40 else 8 if num_tags <= 60 else 6
for lbl in ax_tags.get_yticklabels():
lbl.set_fontsize(fontsize)
for i, (bar, prob) in enumerate(zip(bars, all_probs)):
text_x = min(prob + 0.02, 0.98)
ax_tags.text(text_x, y_positions[i], f"{prob:.3f}", va='center', fontsize=fontsize)
ax_tags.set_xlim(0, 1)
ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})")
from matplotlib.patches import Patch
legend_elements = [
Patch(facecolor=color, label=cat.capitalize())
for cat, color in color_map.items()
if any(t.startswith(f"[{cat[0].upper() if cat!='copyright' else '©'}]") for t in all_tags)
]
if legend_elements:
ax_tags.legend(handles=legend_elements, loc='lower right', fontsize=8)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
plt.close(fig)
buf.seek(0)
return Image.open(buf)
# --- Constants ---
REPO_ID = "celstk/wd-eva02-lora-onnx"
# Model options
MODEL_OPTIONS = {
"cl_eva02_tagger_v1_250426": "cl_eva02_tagger_v1_250426/model.onnx",
"cl_eva02_tagger_v1_250427": "cl_eva02_tagger_v1_250427/model.onnx",
"cl_eva02_tagger_v1_250430": "cl_eva02_tagger_v1_250430/model.onnx",
"cl_eva02_tagger_v1_250502": "cl_eva02_tagger_v1_250503/model.onnx",
"cl_eva02_tagger_v1_250504": "cl_eva02_tagger_v1_250504/model.onnx",
"cl_eva02_tagger_v1_250508": "cl_eva02_tagger_v1_250508/model.onnx"
}
DEFAULT_MODEL = "cl_eva02_tagger_v1_250504"
CACHE_DIR = "./model_cache"
# --- Global variables for paths (initialized at startup) ---
g_onnx_model_path = None
g_tag_mapping_path = None
g_labels_data = None
g_idx_to_tag = None
g_tag_to_category = None
g_current_model = None
# --- Initialization Function ---
def initialize_onnx_paths(model_choice=DEFAULT_MODEL):
global g_onnx_model_path, g_tag_mapping_path, g_labels_data, g_idx_to_tag, g_tag_to_category, g_current_model
if not model_choice in MODEL_OPTIONS:
print(f"Invalid model choice: {model_choice}, falling back to default: {DEFAULT_MODEL}")
model_choice = DEFAULT_MODEL
g_current_model = model_choice
model_dir = model_choice
onnx_filename = MODEL_OPTIONS[model_choice]
tag_mapping_filename = f"{model_dir}/tag_mapping.json"
print(f"Initializing ONNX paths and labels for model: {model_choice}...")
hf_token = os.environ.get("HF_TOKEN")
try:
print(f"Attempting to download ONNX model: {onnx_filename}")
g_onnx_model_path = hf_hub_download(repo_id=REPO_ID, filename=onnx_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False)
print(f"ONNX model path: {g_onnx_model_path}")
print(f"Attempting to download Tag mapping: {tag_mapping_filename}")
g_tag_mapping_path = hf_hub_download(repo_id=REPO_ID, filename=tag_mapping_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False)
print(f"Tag mapping path: {g_tag_mapping_path}")
print("Loading labels from mapping...")
g_labels_data, g_idx_to_tag, g_tag_to_category = load_tag_mapping(g_tag_mapping_path)
print(f"Labels loaded. Count: {len(g_labels_data.names)}")
return True
except Exception as e:
print(f"Error during initialization: {e}")
import traceback; traceback.print_exc()
# Reset globals to force reinitialization
g_onnx_model_path = None
g_tag_mapping_path = None
g_labels_data = None
g_idx_to_tag = None
g_tag_to_category = None
g_current_model = None
# Raise Gradio error to make it visible in the UI
raise gr.Error(f"Initialization failed: {e}. Check logs and HF_TOKEN.")
# Function to handle model change
def change_model(model_choice):
try:
success = initialize_onnx_paths(model_choice)
if success:
return f"Model changed to: {model_choice}"
else:
return "Failed to change model. See logs for details."
except Exception as e:
return f"Error changing model: {str(e)}"
# --- Main Prediction Function (ONNX) ---
@spaces.GPU()
def predict_onnx(image_input, model_choice, gen_threshold, char_threshold, output_mode):
print(f"--- predict_onnx function started (GPU worker) with model {model_choice} ---")
# Ensure current model matches selected model
global g_current_model
if g_current_model != model_choice:
print(f"Model mismatch! Current: {g_current_model}, Selected: {model_choice}. Reinitializing...")
try:
initialize_onnx_paths(model_choice)
except Exception as e:
return f"Error initializing model '{model_choice}': {str(e)}", None
# --- 1. Ensure paths and labels are loaded ---
if g_onnx_model_path is None or g_labels_data is None:
message = "Error: Paths or labels not initialized. Check startup logs."
print(message)
# Return error message and None for the image output
return message, None
# --- 2. Load ONNX Session (inside worker) ---
session = None
try:
print(f"Loading ONNX session from: {g_onnx_model_path}")
available_providers = ort.get_available_providers()
providers = []
if 'CUDAExecutionProvider' in available_providers:
providers.append('CUDAExecutionProvider')
providers.append('CPUExecutionProvider')
print(f"Attempting to load session with providers: {providers}")
session = ort.InferenceSession(g_onnx_model_path, providers=providers)
print(f"ONNX session loaded using: {session.get_providers()[0]}")
except Exception as e:
message = f"Error loading ONNX session in worker: {e}"
print(message)
import traceback; traceback.print_exc()
return message, None
# --- 3. Process Input Image ---
if image_input is None:
return "Please upload an image.", None
print(f"Processing image with thresholds: gen={gen_threshold}, char={char_threshold}")
try:
# Handle different input types (PIL, numpy, URL, file path)
if isinstance(image_input, str):
if image_input.startswith("http"): # URL
response = requests.get(image_input, timeout=10)
response.raise_for_status()
image = Image.open(io.BytesIO(response.content))
elif os.path.exists(image_input): # File path
image = Image.open(image_input)
else:
raise ValueError(f"Invalid image input string: {image_input}")
elif isinstance(image_input, np.ndarray):
image = Image.fromarray(image_input)
elif isinstance(image_input, Image.Image):
image = image_input # Already a PIL image
else:
raise TypeError(f"Unsupported image input type: {type(image_input)}")
# Preprocess the PIL image
original_pil_image, input_tensor = preprocess_image(image)
# Ensure input tensor is float32, as expected by most ONNX models
# (even if the model internally uses float16)
input_tensor = input_tensor.astype(np.float32)
except Exception as e:
message = f"Error processing input image: {e}"
print(message)
return message, None
# --- 4. Run Inference ---
try:
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
print(f"Running inference with input '{input_name}', output '{output_name}'")
start_time = time.time()
outputs = session.run([output_name], {input_name: input_tensor})[0]
inference_time = time.time() - start_time
print(f"Inference completed in {inference_time:.3f} seconds")
# Check for NaN/Inf in outputs
if np.isnan(outputs).any() or np.isinf(outputs).any():
print("Warning: NaN or Inf detected in model output. Clamping...")
outputs = np.nan_to_num(outputs, nan=0.0, posinf=1.0, neginf=0.0) # Clamp to 0-1 range
# Apply sigmoid (outputs are likely logits)
# Use a stable sigmoid implementation
def stable_sigmoid(x):
return 1 / (1 + np.exp(-np.clip(x, -30, 30))) # Clip to avoid overflow
probs = stable_sigmoid(outputs[0]) # Assuming batch size 1
except Exception as e:
message = f"Error during ONNX inference: {e}"
print(message)
import traceback; traceback.print_exc()
return message, None
finally:
# Clean up session if needed (might reduce memory usage between clicks)
del session
# --- 5. Post-process and Format Output ---
try:
print("Post-processing results...")
# Use the correct global variable for labels
predictions = get_tags(probs, g_labels_data, gen_threshold, char_threshold)
# Format output text string
output_tags = []
if predictions.get("rating"): output_tags.append(predictions["rating"][0][0].replace("_", " "))
if predictions.get("quality"): output_tags.append(predictions["quality"][0][0].replace("_", " "))
# Add other categories, respecting order and filtering meta if needed
for category in ["artist", "character", "copyright", "general", "meta"]:
tags_in_category = predictions.get(category, [])
for tag, prob in tags_in_category:
# Basic meta tag filtering for text output
if category == "meta" and any(p in tag.lower() for p in ['id', 'commentary', 'request', 'mismatch']):
continue
output_tags.append(tag.replace("_", " "))
output_text = ", ".join(output_tags)
# Generate visualization if requested
viz_image = None
if output_mode == "Tags + Visualization":
print("Generating visualization...")
# Pass the correct threshold for display title (can pass both if needed)
# For simplicity, passing gen_threshold as a representative value
viz_image = visualize_predictions(original_pil_image, predictions, gen_threshold)
print("Visualization generated.")
else:
print("Visualization skipped.")
print("Prediction complete.")
return output_text, viz_image
except Exception as e:
message = f"Error during post-processing: {e}"
print(message)
import traceback; traceback.print_exc()
return message, None
# --- Gradio Interface Definition (Full ONNX Version) ---
css = """
.gradio-container { font-family: 'IBM Plex Sans', sans-serif; }
footer { display: none !important; }
.gr-prose { max-width: 100% !important; }
"""
# js = """ /* Keep existing JS */ """ # No JS needed currently
with gr.Blocks(css=css) as demo:
gr.Markdown("# CL EVA02 ONNX Tagger")
gr.Markdown("Upload an image or paste an image URL to predict tags using the CL EVA02 Tagger model (ONNX), fine-tuned from [SmilingWolf/wd-eva02-large-tagger-v3](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3).")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image")
model_choice = gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
value=DEFAULT_MODEL,
label="Model Version",
interactive=True
)
gen_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.55, label="General/Meta Tag Threshold")
char_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.60, label="Character/Copyright/Artist Tag Threshold")
output_mode = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", label="Output Mode")
predict_button = gr.Button("Predict", variant="primary")
with gr.Column(scale=1):
output_tags = gr.Textbox(label="Predicted Tags", lines=10, interactive=False)
output_visualization = gr.Image(type="pil", label="Prediction Visualization", interactive=False)
# Handle model change
model_status = gr.Textbox(label="Model Status", interactive=False, visible=False)
model_choice.change(
fn=change_model,
inputs=[model_choice],
outputs=[model_status]
)
gr.Examples(
examples=[
["https://pbs.twimg.com/media/GXBXsRvbQAAg1kp.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"],
["https://pbs.twimg.com/media/GjlX0gibcAA4EJ4.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags Only"],
["https://pbs.twimg.com/media/Gj4nQbjbEAATeoH.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"],
["https://pbs.twimg.com/media/GkbtX0GaoAMlUZt.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"]
],
inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode],
outputs=[output_tags, output_visualization],
fn=predict_onnx, # Use the ONNX prediction function
cache_examples=False # Disable caching for examples during testing
)
predict_button.click(
fn=predict_onnx, # Use the ONNX prediction function
inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode],
outputs=[output_tags, output_visualization]
)
# --- Main Block ---
if __name__ == "__main__":
if not os.environ.get("HF_TOKEN"): print("Warning: HF_TOKEN environment variable not set.")
# Initialize paths and labels at startup (with default model)
initialize_onnx_paths(DEFAULT_MODEL)
# Launch Gradio app
demo.launch(share=True)
|