import gradio as gr import numpy as np from PIL import Image # Keep PIL for now, might be needed by helpers implicitly # from PIL import Image, ImageDraw, ImageFont # No drawing yet import json import os import io import requests import matplotlib.pyplot as plt # For visualization import matplotlib # For backend setting from huggingface_hub import hf_hub_download from dataclasses import dataclass from typing import List, Dict, Optional, Tuple import time import spaces # Required for @spaces.GPU import onnxruntime as ort # Use ONNX Runtime import torch # Keep torch for device check in Tagger import timm # Restore timm from safetensors.torch import load_file as safe_load_file # Restore safetensors loading # MatplotlibのバックエンドをAggに設定 (Keep commented out for now) # matplotlib.use('Agg') # --- Data Classes and Helper Functions --- @dataclass class LabelData: names: list[str] rating: list[np.int64] general: list[np.int64] artist: list[np.int64] character: list[np.int64] copyright: list[np.int64] meta: list[np.int64] quality: list[np.int64] def pil_ensure_rgb(image: Image.Image) -> Image.Image: if image.mode not in ["RGB", "RGBA"]: image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB") if image.mode == "RGBA": background = Image.new("RGB", image.size, (255, 255, 255)) background.paste(image, mask=image.split()[3]) image = background return image def pil_pad_square(image: Image.Image) -> Image.Image: width, height = image.size if width == height: return image new_size = max(width, height) new_image = Image.new(image.mode, (new_size, new_size), (255, 255, 255)) # Use image.mode paste_position = ((new_size - width) // 2, (new_size - height) // 2) new_image.paste(image, paste_position) return new_image def load_tag_mapping(mapping_path): # Use the implementation from the original app.py as it was confirmed working with open(mapping_path, 'r', encoding='utf-8') as f: tag_mapping_data = json.load(f) # Check format compatibility (can be dict of dicts or dict with idx_to_tag/tag_to_category) if isinstance(tag_mapping_data, dict) and "idx_to_tag" in tag_mapping_data: idx_to_tag = {int(k): v for k, v in tag_mapping_data["idx_to_tag"].items()} tag_to_category = tag_mapping_data["tag_to_category"] elif isinstance(tag_mapping_data, dict): # Assuming the dict-of-dicts format from previous tests try: tag_mapping_data_int_keys = {int(k): v for k, v in tag_mapping_data.items()} idx_to_tag = {idx: data['tag'] for idx, data in tag_mapping_data_int_keys.items()} tag_to_category = {data['tag']: data['category'] for data in tag_mapping_data_int_keys.values()} except (KeyError, ValueError) as e: raise ValueError(f"Unsupported tag mapping format (dict): {e}. Expected int keys with 'tag' and 'category'.") else: raise ValueError("Unsupported tag mapping format: Expected a dictionary.") names = [None] * (max(idx_to_tag.keys()) + 1) rating, general, artist, character, copyright, meta, quality = [], [], [], [], [], [], [] for idx, tag in idx_to_tag.items(): if idx >= len(names): names.extend([None] * (idx - len(names) + 1)) names[idx] = tag category = tag_to_category.get(tag, 'Unknown') # Handle missing category mapping gracefully idx_int = int(idx) if category == 'Rating': rating.append(idx_int) elif category == 'General': general.append(idx_int) elif category == 'Artist': artist.append(idx_int) elif category == 'Character': character.append(idx_int) elif category == 'Copyright': copyright.append(idx_int) elif category == 'Meta': meta.append(idx_int) elif category == 'Quality': quality.append(idx_int) return LabelData(names=names, rating=np.array(rating, dtype=np.int64), general=np.array(general, dtype=np.int64), artist=np.array(artist, dtype=np.int64), character=np.array(character, dtype=np.int64), copyright=np.array(copyright, dtype=np.int64), meta=np.array(meta, dtype=np.int64), quality=np.array(quality, dtype=np.int64)), idx_to_tag, tag_to_category def preprocess_image(image: Image.Image, target_size=(448, 448)): # Adapted from onnx_predict.py's version image = pil_ensure_rgb(image) image = pil_pad_square(image) image_resized = image.resize(target_size, Image.BICUBIC) img_array = np.array(image_resized, dtype=np.float32) / 255.0 img_array = img_array.transpose(2, 0, 1) # HWC -> CHW # Assuming model expects RGB based on original code, no BGR conversion here img_array = img_array[::-1, :, :] # BGR conversion if needed - UNCOMMENTED based on user feedback mean = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1) std = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1) img_array = (img_array - mean) / std img_array = np.expand_dims(img_array, axis=0) # Add batch dimension return image, img_array # Add get_tags function (from onnx_predict.py) def get_tags(probs, labels: LabelData, gen_threshold, char_threshold): result = { "rating": [], "general": [], "character": [], "copyright": [], "artist": [], "meta": [], "quality": [] } # Rating (select max) if len(labels.rating) > 0: # Ensure indices are within bounds valid_indices = labels.rating[labels.rating < len(probs)] if len(valid_indices) > 0: rating_probs = probs[valid_indices] if len(rating_probs) > 0: rating_idx_local = np.argmax(rating_probs) rating_idx_global = valid_indices[rating_idx_local] # Check if global index is valid for names list if rating_idx_global < len(labels.names) and labels.names[rating_idx_global] is not None: rating_name = labels.names[rating_idx_global] rating_conf = float(rating_probs[rating_idx_local]) result["rating"].append((rating_name, rating_conf)) else: print(f"Warning: Invalid global index {rating_idx_global} for rating tag.") else: print("Warning: rating_probs became empty after filtering.") else: print("Warning: No valid indices found for rating tags within probs length.") # Quality (select max) if len(labels.quality) > 0: valid_indices = labels.quality[labels.quality < len(probs)] if len(valid_indices) > 0: quality_probs = probs[valid_indices] if len(quality_probs) > 0: quality_idx_local = np.argmax(quality_probs) quality_idx_global = valid_indices[quality_idx_local] if quality_idx_global < len(labels.names) and labels.names[quality_idx_global] is not None: quality_name = labels.names[quality_idx_global] quality_conf = float(quality_probs[quality_idx_local]) result["quality"].append((quality_name, quality_conf)) else: print(f"Warning: Invalid global index {quality_idx_global} for quality tag.") else: print("Warning: quality_probs became empty after filtering.") else: print("Warning: No valid indices found for quality tags within probs length.") # Threshold-based categories category_map = { "general": (labels.general, gen_threshold), "character": (labels.character, char_threshold), "copyright": (labels.copyright, char_threshold), "artist": (labels.artist, char_threshold), "meta": (labels.meta, gen_threshold) # Use gen_threshold for meta as per original code } for category, (indices, threshold) in category_map.items(): if len(indices) > 0: valid_indices = indices[(indices < len(probs))] # Check index bounds first if len(valid_indices) > 0: category_probs = probs[valid_indices] mask = category_probs >= threshold selected_indices_local = np.where(mask)[0] if len(selected_indices_local) > 0: selected_indices_global = valid_indices[selected_indices_local] selected_probs = category_probs[selected_indices_local] for idx_global, prob_val in zip(selected_indices_global, selected_probs): # Check if global index is valid for names list if idx_global < len(labels.names) and labels.names[idx_global] is not None: result[category].append((labels.names[idx_global], float(prob_val))) else: print(f"Warning: Invalid global index {idx_global} for {category} tag.") # else: print(f"No tags found for category '{category}' above threshold {threshold}") # else: print(f"No valid indices found for category '{category}' within probs length.") # else: print(f"No indices defined for category '{category}'") # Sort by probability (descending) for k in result: result[k] = sorted(result[k], key=lambda x: x[1], reverse=True) return result # Add visualize_predictions function (Adapted from onnx_predict.py and previous versions) def visualize_predictions(image: Image.Image, predictions: Dict, threshold: float): # Filter out unwanted meta tags (e.g., id, commentary, request, mismatch) filtered_meta = [] excluded_meta_patterns = ['id', 'commentary', 'request', 'mismatch'] for tag, prob in predictions.get("meta", []): if not any(pattern in tag.lower() for pattern in excluded_meta_patterns): filtered_meta.append((tag, prob)) predictions["meta"] = filtered_meta # Use filtered list for visualization # --- Plotting Setup --- plt.rcParams['font.family'] = 'DejaVu Sans' fig = plt.figure(figsize=(8, 12), dpi=100) ax_tags = fig.add_subplot(1, 1, 1) all_tags, all_probs, all_colors = [], [], [] color_map = { 'rating': 'red', 'character': 'blue', 'copyright': 'purple', 'artist': 'orange', 'general': 'green', 'meta': 'gray', 'quality': 'yellow' } # Aggregate tags from predictions dictionary for cat, prefix, color in [ ('rating', 'R', color_map['rating']), ('quality', 'Q', color_map['quality']), ('character', 'C', color_map['character']), ('copyright', '©', color_map['copyright']), ('artist', 'A', color_map['artist']), ('general', 'G', color_map['general']), ('meta', 'M', color_map['meta']) ]: sorted_tags = sorted(predictions.get(cat, []), key=lambda x: x[1], reverse=True) for tag, prob in sorted_tags: all_tags.append(f"[{prefix}] {tag.replace('_', ' ')}") all_probs.append(prob) all_colors.append(color) if not all_tags: ax_tags.text(0.5, 0.5, "No tags found above threshold", ha='center', va='center') ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})") ax_tags.axis('off') else: sorted_indices = sorted(range(len(all_probs)), key=lambda i: all_probs[i]) all_tags = [all_tags[i] for i in sorted_indices] all_probs = [all_probs[i] for i in sorted_indices] all_colors = [all_colors[i] for i in sorted_indices] num_tags = len(all_tags) bar_height = min(0.8, max(0.1, 0.8 * (30 / num_tags))) if num_tags > 30 else 0.8 y_positions = np.arange(num_tags) bars = ax_tags.barh(y_positions, all_probs, height=bar_height, color=all_colors) ax_tags.set_yticks(y_positions) ax_tags.set_yticklabels(all_tags) fontsize = 10 if num_tags <= 40 else 8 if num_tags <= 60 else 6 for lbl in ax_tags.get_yticklabels(): lbl.set_fontsize(fontsize) for i, (bar, prob) in enumerate(zip(bars, all_probs)): text_x = min(prob + 0.02, 0.98) ax_tags.text(text_x, y_positions[i], f"{prob:.3f}", va='center', fontsize=fontsize) ax_tags.set_xlim(0, 1) ax_tags.set_title(f"Tags (Threshold ≳ {threshold:.2f})") from matplotlib.patches import Patch legend_elements = [ Patch(facecolor=color, label=cat.capitalize()) for cat, color in color_map.items() if any(t.startswith(f"[{cat[0].upper() if cat!='copyright' else '©'}]") for t in all_tags) ] if legend_elements: ax_tags.legend(handles=legend_elements, loc='lower right', fontsize=8) plt.tight_layout() buf = io.BytesIO() plt.savefig(buf, format='png', dpi=100) plt.close(fig) buf.seek(0) return Image.open(buf) # --- Constants --- REPO_ID = "celstk/wd-eva02-lora-onnx" # Model options MODEL_OPTIONS = { "cl_eva02_tagger_v1_250426": "cl_eva02_tagger_v1_250426/model.onnx", "cl_eva02_tagger_v1_250427": "cl_eva02_tagger_v1_250427/model.onnx", "cl_eva02_tagger_v1_250430": "cl_eva02_tagger_v1_250430/model.onnx", "cl_eva02_tagger_v1_250502": "cl_eva02_tagger_v1_250503/model.onnx", "cl_eva02_tagger_v1_250504": "cl_eva02_tagger_v1_250504/model.onnx", "cl_eva02_tagger_v1_250508": "cl_eva02_tagger_v1_250508/model.onnx" } DEFAULT_MODEL = "cl_eva02_tagger_v1_250504" CACHE_DIR = "./model_cache" # --- Global variables for paths (initialized at startup) --- g_onnx_model_path = None g_tag_mapping_path = None g_labels_data = None g_idx_to_tag = None g_tag_to_category = None g_current_model = None # --- Initialization Function --- def initialize_onnx_paths(model_choice=DEFAULT_MODEL): global g_onnx_model_path, g_tag_mapping_path, g_labels_data, g_idx_to_tag, g_tag_to_category, g_current_model if not model_choice in MODEL_OPTIONS: print(f"Invalid model choice: {model_choice}, falling back to default: {DEFAULT_MODEL}") model_choice = DEFAULT_MODEL g_current_model = model_choice model_dir = model_choice onnx_filename = MODEL_OPTIONS[model_choice] tag_mapping_filename = f"{model_dir}/tag_mapping.json" print(f"Initializing ONNX paths and labels for model: {model_choice}...") hf_token = os.environ.get("HF_TOKEN") try: print(f"Attempting to download ONNX model: {onnx_filename}") g_onnx_model_path = hf_hub_download(repo_id=REPO_ID, filename=onnx_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False) print(f"ONNX model path: {g_onnx_model_path}") print(f"Attempting to download Tag mapping: {tag_mapping_filename}") g_tag_mapping_path = hf_hub_download(repo_id=REPO_ID, filename=tag_mapping_filename, cache_dir=CACHE_DIR, token=hf_token, force_download=False) print(f"Tag mapping path: {g_tag_mapping_path}") print("Loading labels from mapping...") g_labels_data, g_idx_to_tag, g_tag_to_category = load_tag_mapping(g_tag_mapping_path) print(f"Labels loaded. Count: {len(g_labels_data.names)}") return True except Exception as e: print(f"Error during initialization: {e}") import traceback; traceback.print_exc() # Reset globals to force reinitialization g_onnx_model_path = None g_tag_mapping_path = None g_labels_data = None g_idx_to_tag = None g_tag_to_category = None g_current_model = None # Raise Gradio error to make it visible in the UI raise gr.Error(f"Initialization failed: {e}. Check logs and HF_TOKEN.") # Function to handle model change def change_model(model_choice): try: success = initialize_onnx_paths(model_choice) if success: return f"Model changed to: {model_choice}" else: return "Failed to change model. See logs for details." except Exception as e: return f"Error changing model: {str(e)}" # --- Main Prediction Function (ONNX) --- @spaces.GPU() def predict_onnx(image_input, model_choice, gen_threshold, char_threshold, output_mode): print(f"--- predict_onnx function started (GPU worker) with model {model_choice} ---") # Ensure current model matches selected model global g_current_model if g_current_model != model_choice: print(f"Model mismatch! Current: {g_current_model}, Selected: {model_choice}. Reinitializing...") try: initialize_onnx_paths(model_choice) except Exception as e: return f"Error initializing model '{model_choice}': {str(e)}", None # --- 1. Ensure paths and labels are loaded --- if g_onnx_model_path is None or g_labels_data is None: message = "Error: Paths or labels not initialized. Check startup logs." print(message) # Return error message and None for the image output return message, None # --- 2. Load ONNX Session (inside worker) --- session = None try: print(f"Loading ONNX session from: {g_onnx_model_path}") available_providers = ort.get_available_providers() providers = [] if 'CUDAExecutionProvider' in available_providers: providers.append('CUDAExecutionProvider') providers.append('CPUExecutionProvider') print(f"Attempting to load session with providers: {providers}") session = ort.InferenceSession(g_onnx_model_path, providers=providers) print(f"ONNX session loaded using: {session.get_providers()[0]}") except Exception as e: message = f"Error loading ONNX session in worker: {e}" print(message) import traceback; traceback.print_exc() return message, None # --- 3. Process Input Image --- if image_input is None: return "Please upload an image.", None print(f"Processing image with thresholds: gen={gen_threshold}, char={char_threshold}") try: # Handle different input types (PIL, numpy, URL, file path) if isinstance(image_input, str): if image_input.startswith("http"): # URL response = requests.get(image_input, timeout=10) response.raise_for_status() image = Image.open(io.BytesIO(response.content)) elif os.path.exists(image_input): # File path image = Image.open(image_input) else: raise ValueError(f"Invalid image input string: {image_input}") elif isinstance(image_input, np.ndarray): image = Image.fromarray(image_input) elif isinstance(image_input, Image.Image): image = image_input # Already a PIL image else: raise TypeError(f"Unsupported image input type: {type(image_input)}") # Preprocess the PIL image original_pil_image, input_tensor = preprocess_image(image) # Ensure input tensor is float32, as expected by most ONNX models # (even if the model internally uses float16) input_tensor = input_tensor.astype(np.float32) except Exception as e: message = f"Error processing input image: {e}" print(message) return message, None # --- 4. Run Inference --- try: input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name print(f"Running inference with input '{input_name}', output '{output_name}'") start_time = time.time() outputs = session.run([output_name], {input_name: input_tensor})[0] inference_time = time.time() - start_time print(f"Inference completed in {inference_time:.3f} seconds") # Check for NaN/Inf in outputs if np.isnan(outputs).any() or np.isinf(outputs).any(): print("Warning: NaN or Inf detected in model output. Clamping...") outputs = np.nan_to_num(outputs, nan=0.0, posinf=1.0, neginf=0.0) # Clamp to 0-1 range # Apply sigmoid (outputs are likely logits) # Use a stable sigmoid implementation def stable_sigmoid(x): return 1 / (1 + np.exp(-np.clip(x, -30, 30))) # Clip to avoid overflow probs = stable_sigmoid(outputs[0]) # Assuming batch size 1 except Exception as e: message = f"Error during ONNX inference: {e}" print(message) import traceback; traceback.print_exc() return message, None finally: # Clean up session if needed (might reduce memory usage between clicks) del session # --- 5. Post-process and Format Output --- try: print("Post-processing results...") # Use the correct global variable for labels predictions = get_tags(probs, g_labels_data, gen_threshold, char_threshold) # Format output text string output_tags = [] if predictions.get("rating"): output_tags.append(predictions["rating"][0][0].replace("_", " ")) if predictions.get("quality"): output_tags.append(predictions["quality"][0][0].replace("_", " ")) # Add other categories, respecting order and filtering meta if needed for category in ["artist", "character", "copyright", "general", "meta"]: tags_in_category = predictions.get(category, []) for tag, prob in tags_in_category: # Basic meta tag filtering for text output if category == "meta" and any(p in tag.lower() for p in ['id', 'commentary', 'request', 'mismatch']): continue output_tags.append(tag.replace("_", " ")) output_text = ", ".join(output_tags) # Generate visualization if requested viz_image = None if output_mode == "Tags + Visualization": print("Generating visualization...") # Pass the correct threshold for display title (can pass both if needed) # For simplicity, passing gen_threshold as a representative value viz_image = visualize_predictions(original_pil_image, predictions, gen_threshold) print("Visualization generated.") else: print("Visualization skipped.") print("Prediction complete.") return output_text, viz_image except Exception as e: message = f"Error during post-processing: {e}" print(message) import traceback; traceback.print_exc() return message, None # --- Gradio Interface Definition (Full ONNX Version) --- css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } footer { display: none !important; } .gr-prose { max-width: 100% !important; } """ # js = """ /* Keep existing JS */ """ # No JS needed currently with gr.Blocks(css=css) as demo: gr.Markdown("# CL EVA02 ONNX Tagger") gr.Markdown("Upload an image or paste an image URL to predict tags using the CL EVA02 Tagger model (ONNX), fine-tuned from [SmilingWolf/wd-eva02-large-tagger-v3](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3).") with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image") model_choice = gr.Dropdown( choices=list(MODEL_OPTIONS.keys()), value=DEFAULT_MODEL, label="Model Version", interactive=True ) gen_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.55, label="General/Meta Tag Threshold") char_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.60, label="Character/Copyright/Artist Tag Threshold") output_mode = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", label="Output Mode") predict_button = gr.Button("Predict", variant="primary") with gr.Column(scale=1): output_tags = gr.Textbox(label="Predicted Tags", lines=10, interactive=False) output_visualization = gr.Image(type="pil", label="Prediction Visualization", interactive=False) # Handle model change model_status = gr.Textbox(label="Model Status", interactive=False, visible=False) model_choice.change( fn=change_model, inputs=[model_choice], outputs=[model_status] ) gr.Examples( examples=[ ["https://pbs.twimg.com/media/GXBXsRvbQAAg1kp.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"], ["https://pbs.twimg.com/media/GjlX0gibcAA4EJ4.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags Only"], ["https://pbs.twimg.com/media/Gj4nQbjbEAATeoH.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"], ["https://pbs.twimg.com/media/GkbtX0GaoAMlUZt.jpg", DEFAULT_MODEL, 0.55, 0.70, "Tags + Visualization"] ], inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode], outputs=[output_tags, output_visualization], fn=predict_onnx, # Use the ONNX prediction function cache_examples=False # Disable caching for examples during testing ) predict_button.click( fn=predict_onnx, # Use the ONNX prediction function inputs=[image_input, model_choice, gen_threshold, char_threshold, output_mode], outputs=[output_tags, output_visualization] ) # --- Main Block --- if __name__ == "__main__": if not os.environ.get("HF_TOKEN"): print("Warning: HF_TOKEN environment variable not set.") # Initialize paths and labels at startup (with default model) initialize_onnx_paths(DEFAULT_MODEL) # Launch Gradio app demo.launch(share=True)