counting_words / app.py
Bor Hodošček
fix: bpe byte display and misc display tweaks
6b833b2 unverified
# /// script
# [tool.marimo.runtime]
# auto_instantiate = false
# ///
import marimo
__generated_with = "0.13.0"
app = marimo.App(width="medium")
@app.cell
def _():
import hashlib
import math
import re
from typing import Any, Callable, Optional, Union
import altair as alt
import marimo as mo
import polars as pl
import spacy
import spacy.language
from transformers import (
AutoTokenizer,
PreTrainedTokenizerBase,
)
# Load spaCy models for English and Japanese
nlp_en: spacy.language.Language = spacy.load("en_core_web_md")
nlp_ja: spacy.language.Language = spacy.load("ja_core_news_md")
# List of tokenizer models
llm_model_choices: list[str] = [
# "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"google/gemma-3-27b-it",
"ibm-granite/granite-3.3-8b-instruct",
"shisa-ai/shisa-v2-qwen2.5-7b",
# "deepseek-ai/DeepSeek-R1",
# "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
# "Qwen/Qwen2.5-72B-Instruct",
# "openai-community/gpt2",
"google-bert/bert-large-uncased",
]
return (
Any,
AutoTokenizer,
Callable,
Optional,
PreTrainedTokenizerBase,
Union,
alt,
hashlib,
llm_model_choices,
math,
mo,
nlp_en,
nlp_ja,
pl,
re,
spacy,
)
@app.cell
def _(mo):
mo.md("""# Tokenization for English and Japanese""")
return
@app.cell
def _(Callable, mo):
# Central state for the text input content
# Type the getter and setter
get_text_content: Callable[[], str]
set_text_content: Callable[[str], None]
get_text_content, set_text_content = mo.state("")
return get_text_content, set_text_content
@app.cell
def _(mo):
# Placeholder texts
en_placeholder = """
Mrs. Ferrars died on the night of the 16th⁠–⁠17th September⁠—a Thursday. I was sent for at eight o’clock on the morning of Friday the 17th. There was nothing to be done. She had been dead some hours.
""".strip()
ja_placeholder = """
吾輩は猫である。名前はまだ無い。
 どこで生れたかとんと見当がつかぬ。何でも薄暗いじめじめした所でニャーニャー泣いていた事だけは記憶している。
""".strip()
# Create UI element for language selection
language_selector: mo.ui.radio = mo.ui.radio(
options=["English", "Japanese"], value="English", label="Language"
)
# Return selector and placeholders
return en_placeholder, ja_placeholder, language_selector
@app.cell
def _(
en_placeholder,
get_text_content,
ja_placeholder,
language_selector,
mo,
set_text_content,
):
# Define text_input dynamically based on language
current_placeholder: str = (
en_placeholder if language_selector.value == "English" else ja_placeholder
)
text_input: mo.ui.text_area = mo.ui.text_area(
value=get_text_content(),
label="Enter text",
placeholder=current_placeholder,
full_width=True,
on_change=lambda v: set_text_content(v),
)
# Type the return tuple
return current_placeholder, text_input
@app.cell
def _(Callable, current_placeholder, mo, set_text_content):
# Type the inner function
def apply_placeholder() -> None:
set_text_content(current_placeholder)
apply_placeholder_button: mo.ui.button = mo.ui.button(
label="Use Placeholder Text", on_click=lambda _: apply_placeholder()
)
# Type the return tuple
return (apply_placeholder_button,)
@app.cell
def _(apply_placeholder_button, language_selector, mo, text_input):
mo.vstack(
[
text_input,
mo.hstack([language_selector, apply_placeholder_button], justify="start"),
]
)
return
@app.cell
def _(get_text_content, language_selector, mo, nlp_en, nlp_ja, spacy):
# Analyze text using spaCy based on selected language
current_text: str = get_text_content()
doc: spacy.tokens.Doc
if language_selector.value == "English":
doc = nlp_en(current_text)
else:
doc = nlp_ja(current_text)
model_name: str = (
nlp_en.meta["name"]
if language_selector.value == "English"
else nlp_ja.meta["name"]
)
tokenized_text: list[str] = [token.text for token in doc]
token_count: int = len(tokenized_text)
mo.md(
f"**Tokenized Text using spaCy {'en_' if language_selector.value == 'English' else 'ja_'}{model_name}:** {' | '.join(tokenized_text)}\n\n**Token Count:** {token_count}"
)
return current_text, doc
@app.cell
def _(doc, mo, pl):
token_data: pl.DataFrame = pl.DataFrame(
{
"Token": [token.text for token in doc],
"Lemma": [token.lemma_ for token in doc],
"POS": [token.pos_ for token in doc],
"Tag": [token.tag_ for token in doc],
"Morph": [str(token.morph) for token in doc],
"OOV": [
token.is_oov for token in doc
], # FIXME: How to get .is_oov() from sudachi directly? This only works for English now...
"Token Position": list(range(len(doc))),
"Sentence Number": [
i for i, sent in enumerate(doc.sents) for token in sent
],
}
)
mo.ui.dataframe(token_data, page_size=50)
return (token_data,)
@app.cell
def _(mo):
column_selector: mo.ui.dropdown = mo.ui.dropdown(
options=["POS", "Tag", "Lemma", "Token", "Morph", "OOV"],
value="POS",
label="Select column to visualize",
)
column_selector
return (column_selector,)
@app.cell
def _(alt, column_selector, mo, pl, token_data):
mo.stop(token_data.is_empty(), "Please set input text.")
selected_column: str = column_selector.value
# Calculate value counts for the selected column
counts_df: pl.DataFrame = (
token_data[selected_column]
.value_counts()
.sort(by=["count", selected_column], descending=[True, False])
)
chart: alt.Chart = (
alt.Chart(counts_df)
.mark_bar()
.encode(
x=alt.X("count", title="Frequency"),
y=alt.Y(selected_column, title=selected_column, sort=None),
tooltip=[selected_column, "count"],
)
.properties(title=f"{selected_column} Distribution")
.interactive()
)
mo.ui.altair_chart(chart)
return
@app.cell
def _(llm_model_choices, mo):
llm_tokenizer_selector: mo.ui.dropdown = mo.ui.dropdown(
options=llm_model_choices,
value=llm_model_choices[0],
label="Select LLM Tokenizer Model",
)
llm_tokenizer_selector
return (llm_tokenizer_selector,)
@app.cell
def _(AutoTokenizer, PreTrainedTokenizerBase, llm_tokenizer_selector):
# Adapted code from: https://huggingface.co/spaces/barttee/tokenizers/blob/main/app.py
selected_model_name: str = llm_tokenizer_selector.value
tokenizer: PreTrainedTokenizerBase = AutoTokenizer.from_pretrained(
selected_model_name
)
return (tokenizer,)
@app.cell
def _(Union, math):
TokenStatsDict = dict[str, dict[str, Union[int, float]]]
def get_token_stats(tokens: list[str], original_text: str) -> TokenStatsDict:
"""Calculate enhanced statistics about the tokens."""
if not tokens:
# Return default structure matching TokenStatsDict
return {
"basic_stats": {
"total_tokens": 0,
"unique_tokens": 0,
"compression_ratio": 0.0,
"space_tokens": 0,
"newline_tokens": 0,
"special_tokens": 0,
"punctuation_tokens": 0,
"unique_percentage": 0.0,
},
"length_stats": {
"avg_length": 0.0,
"std_dev": 0.0,
"min_length": 0,
"max_length": 0,
"median_length": 0.0,
},
}
total_tokens: int = len(tokens)
unique_tokens: int = len(set(tokens))
compression_ratio: float = (
len(original_text) / total_tokens if total_tokens > 0 else 0.0
)
space_tokens: int = sum(1 for t in tokens if t.startswith(("Ġ", " ")))
newline_tokens: int = sum(
1 for t in tokens if "Ċ" in t or t == "\n" or t == "<0x0A>"
)
special_tokens: int = sum(
1
for t in tokens
if (t.startswith("<") and t.endswith(">"))
or (t.startswith("[") and t.endswith("]"))
)
punctuation_tokens: int = sum(
1
for t in tokens
if len(t) == 1 and not t.isalnum() and t not in [" ", "\n", "Ġ", "Ċ"]
)
lengths: list[int] = [len(t) for t in tokens]
if not lengths: # Should not happen if tokens is not empty, but safe check
return { # Return default structure matching TokenStatsDict
"basic_stats": {
"total_tokens": 0,
"unique_tokens": 0,
"compression_ratio": 0.0,
"space_tokens": 0,
"newline_tokens": 0,
"special_tokens": 0,
"punctuation_tokens": 0,
"unique_percentage": 0.0,
},
"length_stats": {
"avg_length": 0.0,
"std_dev": 0.0,
"min_length": 0,
"max_length": 0,
"median_length": 0.0,
},
}
mean_length: float = sum(lengths) / len(lengths)
variance: float = sum((x - mean_length) ** 2 for x in lengths) / len(lengths)
std_dev: float = math.sqrt(variance)
sorted_lengths: list[int] = sorted(lengths)
median_length: float = float(sorted_lengths[len(lengths) // 2])
return {
"basic_stats": {
"total_tokens": total_tokens,
"unique_tokens": unique_tokens,
"compression_ratio": round(compression_ratio, 2),
"space_tokens": space_tokens,
"newline_tokens": newline_tokens,
"special_tokens": special_tokens,
"punctuation_tokens": punctuation_tokens,
"unique_percentage": round(unique_tokens / total_tokens * 100, 1)
if total_tokens > 0
else 0.0,
},
"length_stats": {
"avg_length": round(mean_length, 2),
"std_dev": round(std_dev, 2),
"min_length": min(lengths),
"max_length": max(lengths),
"median_length": median_length,
},
}
return (get_token_stats,)
@app.cell
def _(hashlib):
def get_varied_color(token: str) -> dict[str, str]:
"""Generate vibrant colors with HSL for better visual distinction."""
token_hash: str = hashlib.md5(token.encode()).hexdigest()
hue: int = int(token_hash[:3], 16) % 360
saturation: int = 70 + (int(token_hash[3:5], 16) % 20)
lightness: int = 80 + (int(token_hash[5:7], 16) % 10)
text_lightness: int = 20
return {
"background": f"hsl({hue}, {saturation}%, {lightness}%)",
"text": f"hsl({hue}, {saturation}%, {text_lightness}%)",
}
return (get_varied_color,)
@app.function
def fix_token(
token: str, re
) -> (
str
): # re module type is complex, leave as Any implicitly or import types.ModuleType
"""Fix token for display, handling byte fallbacks and spaces."""
# Check for byte fallback pattern <0xHH> using a full match
byte_match = re.fullmatch(r"<0x([0-9A-Fa-f]{2})>", token)
if byte_match:
hex_value = byte_match.group(1).upper()
# Return a clear representation indicating it's a byte
return f"<0x{hex_value}>"
# Replace SentencePiece space marker U+2581 (' ') with a middle dot
token = token.replace(" ", "·")
# Replace BPE space marker 'Ġ' with a middle dot
if token.startswith("Ġ"):
space_count = token.count("Ġ")
# Ensure we only replace the leading 'Ġ' markers
return "·" * space_count + token[space_count:]
# Replace newline markers for display
token = token.replace("Ċ", "↵\n")
# Handle byte representation of newline AFTER general byte check
# This specific check might become redundant if <0x0A> is caught by the byte_match above
# Keep it for now as a fallback.
token = token.replace("<0x0A>", "↵\n")
return token
@app.cell
def _(Any, PreTrainedTokenizerBase):
def get_tokenizer_info(
tokenizer: PreTrainedTokenizerBase,
) -> dict[str, Any]:
"""
Extract useful information from a tokenizer.
Returns a dictionary with tokenizer details.
"""
info: dict[str, Any] = {}
try:
if hasattr(tokenizer, "vocab_size"):
info["vocab_size"] = tokenizer.vocab_size
elif hasattr(tokenizer, "get_vocab"):
info["vocab_size"] = len(tokenizer.get_vocab())
if (
hasattr(tokenizer, "model_max_length")
and isinstance(tokenizer.model_max_length, int)
and tokenizer.model_max_length < 1000000
):
info["model_max_length"] = tokenizer.model_max_length
else:
info["model_max_length"] = "Not specified or very large"
info["tokenizer_type"] = tokenizer.__class__.__name__
special_tokens: dict[str, str] = {}
special_token_attributes: list[str] = [
"pad_token",
"eos_token",
"bos_token",
"sep_token",
"cls_token",
"unk_token",
"mask_token",
]
processed_tokens: set[str] = (
set()
) # Keep track of processed tokens to avoid duplicates
# Prefer all_special_tokens if available
if hasattr(tokenizer, "all_special_tokens"):
for token_value in tokenizer.all_special_tokens:
if (
not token_value
or not str(token_value).strip()
or str(token_value) in processed_tokens
):
continue
token_name = "special_token" # Default name
# Find the attribute name corresponding to the token value
for attr_name in special_token_attributes:
if (
hasattr(tokenizer, attr_name)
and getattr(tokenizer, attr_name) == token_value
):
token_name = attr_name
break
special_tokens[token_name] = str(token_value)
processed_tokens.add(str(token_value))
# Fallback/Augment with individual attributes if not covered by all_special_tokens
for token_name in special_token_attributes:
if hasattr(tokenizer, token_name):
token_value = getattr(tokenizer, token_name)
if (
token_value
and str(token_value).strip()
and str(token_value) not in processed_tokens
):
special_tokens[token_name] = str(token_value)
processed_tokens.add(str(token_value))
info["special_tokens"] = special_tokens if special_tokens else "None found"
except Exception as e:
info["error"] = f"Error extracting tokenizer info: {str(e)}"
return info
return (get_tokenizer_info,)
@app.cell
def _(mo):
show_ids_switch: mo.ui.switch = mo.ui.switch(
label="Show token IDs instead of text", value=False
)
return (show_ids_switch,)
@app.cell
def _(
Any,
Optional,
Union,
current_text,
fix_token,
get_token_stats,
get_tokenizer_info,
get_varied_color,
llm_tokenizer_selector,
mo,
re,
show_ids_switch,
tokenizer,
):
# Define the Unicode replacement character
REPLACEMENT_CHARACTER = "\ufffd"
# Get tokenizer metadata
tokenizer_info: dict[str, Any] = get_tokenizer_info(tokenizer)
# 1. Encode text to get token IDs first.
token_ids: list[int] = tokenizer.encode(current_text, add_special_tokens=False)
# 2. Decode each token ID individually.
# We will check for REPLACEMENT_CHARACTER later.
all_decoded_tokens: list[str] = [
tokenizer.decode(
[token_id], skip_special_tokens=False, clean_up_tokenization_spaces=False
)
for token_id in token_ids
]
total_token_count: int = len(token_ids) # Count based on IDs
# Limit the number of tokens for display
display_limit: int = 1000
# Limit consistently using token IDs and the decoded tokens
display_token_ids: list[int] = token_ids[:display_limit]
display_decoded_tokens: list[str] = all_decoded_tokens[:display_limit]
display_limit_reached: bool = total_token_count > display_limit
# Generate data for visualization
TokenVisData = dict[str, Union[str, int, bool, dict[str, str]]]
llm_token_data: list[TokenVisData] = []
# Use zip for parallel iteration
for idx, (token_id, token_str) in enumerate(
zip(display_token_ids, display_decoded_tokens)
):
colors: dict[str, str] = get_varied_color(
token_str
if REPLACEMENT_CHARACTER not in token_str
else f"invalid_{token_id}"
) # Color based on string or ID if invalid
is_invalid_utf8 = REPLACEMENT_CHARACTER in token_str
fixed_token_display: str
original_for_title: str = (
token_str # Store the potentially problematic string for title
)
if is_invalid_utf8:
# If decode failed, show a representation with the hex ID
fixed_token_display = f"<0x{token_id:X}>"
else:
# If decode succeeded, apply standard fixes
fixed_token_display = fix_token(token_str, re)
llm_token_data.append(
{
"original": original_for_title, # Store the raw decoded string (might contain �)
"display": fixed_token_display, # Store the cleaned/invalid representation
"colors": colors,
"is_newline": "↵" in fixed_token_display, # Check the display version
"token_id": token_id,
"token_index": idx,
"is_invalid": is_invalid_utf8, # Add flag for potential styling/title changes
}
)
# Calculate statistics using the list of *successfully* decoded token strings
# We might want to reconsider what `all_tokens` means for stats if many are invalid.
# For now, let's use the potentially problematic strings, as stats are mostly length/count based.
token_stats: dict[str, dict[str, Union[int, float]]] = get_token_stats(
all_decoded_tokens,
current_text, # Pass the full list from decode()
)
# Construct HTML for colored tokens using list comprehension (functional style)
html_parts: list[str] = [
(
lambda item: (
style
:= f"background-color: {item['colors']['background']}; color: {item['colors']['text']}; padding: 1px 3px; margin: 1px; border-radius: 3px; display: inline-block; white-space: pre-wrap; line-height: 1.4;"
# Add specific style for invalid tokens if needed
+ (" border: 1px solid red;" if item.get("is_invalid") else ""),
# Modify title based on validity
title := (
f"Original: {item['original']}\nID: {item['token_id']}"
+ ("\n(Invalid UTF-8)" if item.get("is_invalid") else "")
+ ("\n(Byte Token)" if item["display"].startswith("byte[") else "")
),
display_content := str(item["token_id"])
if show_ids_switch.value
else item["display"],
f'<span style="{style}" title="{title}">{display_content}</span>',
)[-1] # Get the last element (the formatted string) from the lambda's tuple
)(item)
for item in llm_token_data
]
token_viz_html: mo.Html = mo.Html(
f'<div style="line-height: 1.6;">{"".join(html_parts)}</div>'
)
# Optional: Add a warning if the display limit was reached
limit_warning: Optional[mo.md] = None # Use Optional type
if display_limit_reached:
limit_warning = mo.md(f"""**Warning:** Displaying only the first {display_limit:,} tokens out of {total_token_count:,}.
Statistics are calculated on the full text.""").callout(kind="warn")
# Use dict access safely with .get() for stats
basic_stats: dict[str, Union[int, float]] = token_stats.get("basic_stats", {})
length_stats: dict[str, Union[int, float]] = token_stats.get("length_stats", {})
# Use list comprehensions for markdown generation (functional style)
basic_stats_md: str = "**Basic Stats:**\n\n" + "\n".join(
f"- **{key.replace('_', ' ').title()}:** `{value}`"
for key, value in basic_stats.items()
)
length_stats_md: str = "**Length (Character) Stats:**\n\n" + "\n".join(
f"- **{key.replace('_', ' ').title()}:** `{value}`"
for key, value in length_stats.items()
)
# Build tokenizer info markdown parts
tokenizer_info_md_parts: list[str] = [
f"**Tokenizer Type:** `{tokenizer_info.get('tokenizer_type', 'N/A')}`"
]
if vocab_size := tokenizer_info.get("vocab_size"):
tokenizer_info_md_parts.append(f"**Vocab Size:** `{vocab_size:,}`")
if max_len := tokenizer_info.get("model_max_length"):
tokenizer_info_md_parts.append(f"**Model Max Length:** `{max_len}`")
special_tokens_info = tokenizer_info.get("special_tokens")
if isinstance(special_tokens_info, dict) and special_tokens_info:
tokenizer_info_md_parts.append("**Special Tokens:**")
tokenizer_info_md_parts.extend(
f" - `{name}`: `{str(val)}`" for name, val in special_tokens_info.items()
)
elif isinstance(special_tokens_info, str): # Handle "None found" case
tokenizer_info_md_parts.append(f"**Special Tokens:** `{special_tokens_info}`")
if error_info := tokenizer_info.get("error"):
tokenizer_info_md_parts.append(f"**Info Error:** `{error_info}`")
tokenizer_info_md: str = "\n\n".join(tokenizer_info_md_parts)
# Display the final markdown output
mo.md(f"""# LLM tokenizer: {llm_tokenizer_selector.value}
## Tokenizer Info
{tokenizer_info_md}
{show_ids_switch}
## Tokenizer output
{limit_warning if limit_warning else ""}
{mo.as_html(token_viz_html)}
## Token Statistics
(Calculated on full text if truncated above)
{basic_stats_md}
{length_stats_md}
""")
return (
all_decoded_tokens,
token_ids,
basic_stats_md,
display_limit_reached,
length_stats_md,
limit_warning,
llm_token_data,
token_stats,
token_viz_html,
tokenizer_info,
tokenizer_info_md,
total_token_count,
)
@app.cell
def _():
return
if __name__ == "__main__":
app.run()