# /// script # [tool.marimo.runtime] # auto_instantiate = false # /// import marimo __generated_with = "0.13.0" app = marimo.App(width="medium") @app.cell def _(): import hashlib import math import re from typing import Any, Callable, Optional, Union import altair as alt import marimo as mo import polars as pl import spacy import spacy.language from transformers import ( AutoTokenizer, PreTrainedTokenizerBase, ) # Load spaCy models for English and Japanese nlp_en: spacy.language.Language = spacy.load("en_core_web_md") nlp_ja: spacy.language.Language = spacy.load("ja_core_news_md") # List of tokenizer models llm_model_choices: list[str] = [ # "meta-llama/Llama-4-Scout-17B-16E-Instruct", "google/gemma-3-27b-it", "ibm-granite/granite-3.3-8b-instruct", "shisa-ai/shisa-v2-qwen2.5-7b", # "deepseek-ai/DeepSeek-R1", # "mistralai/Mistral-Small-3.1-24B-Instruct-2503", # "Qwen/Qwen2.5-72B-Instruct", # "openai-community/gpt2", "google-bert/bert-large-uncased", ] return ( Any, AutoTokenizer, Callable, Optional, PreTrainedTokenizerBase, Union, alt, hashlib, llm_model_choices, math, mo, nlp_en, nlp_ja, pl, re, spacy, ) @app.cell def _(mo): mo.md("""# Tokenization for English and Japanese""") return @app.cell def _(Callable, mo): # Central state for the text input content # Type the getter and setter get_text_content: Callable[[], str] set_text_content: Callable[[str], None] get_text_content, set_text_content = mo.state("") return get_text_content, set_text_content @app.cell def _(mo): # Placeholder texts en_placeholder = """ Mrs. Ferrars died on the night of the 16th⁠–⁠17th September⁠—a Thursday. I was sent for at eight o’clock on the morning of Friday the 17th. There was nothing to be done. She had been dead some hours. """.strip() ja_placeholder = """ 吾輩は猫である。名前はまだ無い。  どこで生れたかとんと見当がつかぬ。何でも薄暗いじめじめした所でニャーニャー泣いていた事だけは記憶している。 """.strip() # Create UI element for language selection language_selector: mo.ui.radio = mo.ui.radio( options=["English", "Japanese"], value="English", label="Language" ) # Return selector and placeholders return en_placeholder, ja_placeholder, language_selector @app.cell def _( en_placeholder, get_text_content, ja_placeholder, language_selector, mo, set_text_content, ): # Define text_input dynamically based on language current_placeholder: str = ( en_placeholder if language_selector.value == "English" else ja_placeholder ) text_input: mo.ui.text_area = mo.ui.text_area( value=get_text_content(), label="Enter text", placeholder=current_placeholder, full_width=True, on_change=lambda v: set_text_content(v), ) # Type the return tuple return current_placeholder, text_input @app.cell def _(Callable, current_placeholder, mo, set_text_content): # Type the inner function def apply_placeholder() -> None: set_text_content(current_placeholder) apply_placeholder_button: mo.ui.button = mo.ui.button( label="Use Placeholder Text", on_click=lambda _: apply_placeholder() ) # Type the return tuple return (apply_placeholder_button,) @app.cell def _(apply_placeholder_button, language_selector, mo, text_input): mo.vstack( [ text_input, mo.hstack([language_selector, apply_placeholder_button], justify="start"), ] ) return @app.cell def _(get_text_content, language_selector, mo, nlp_en, nlp_ja, spacy): # Analyze text using spaCy based on selected language current_text: str = get_text_content() doc: spacy.tokens.Doc if language_selector.value == "English": doc = nlp_en(current_text) else: doc = nlp_ja(current_text) model_name: str = ( nlp_en.meta["name"] if language_selector.value == "English" else nlp_ja.meta["name"] ) tokenized_text: list[str] = [token.text for token in doc] token_count: int = len(tokenized_text) mo.md( f"**Tokenized Text using spaCy {'en_' if language_selector.value == 'English' else 'ja_'}{model_name}:** {' | '.join(tokenized_text)}\n\n**Token Count:** {token_count}" ) return current_text, doc @app.cell def _(doc, mo, pl): token_data: pl.DataFrame = pl.DataFrame( { "Token": [token.text for token in doc], "Lemma": [token.lemma_ for token in doc], "POS": [token.pos_ for token in doc], "Tag": [token.tag_ for token in doc], "Morph": [str(token.morph) for token in doc], "OOV": [ token.is_oov for token in doc ], # FIXME: How to get .is_oov() from sudachi directly? This only works for English now... "Token Position": list(range(len(doc))), "Sentence Number": [ i for i, sent in enumerate(doc.sents) for token in sent ], } ) mo.ui.dataframe(token_data, page_size=50) return (token_data,) @app.cell def _(mo): column_selector: mo.ui.dropdown = mo.ui.dropdown( options=["POS", "Tag", "Lemma", "Token", "Morph", "OOV"], value="POS", label="Select column to visualize", ) column_selector return (column_selector,) @app.cell def _(alt, column_selector, mo, pl, token_data): mo.stop(token_data.is_empty(), "Please set input text.") selected_column: str = column_selector.value # Calculate value counts for the selected column counts_df: pl.DataFrame = ( token_data[selected_column] .value_counts() .sort(by=["count", selected_column], descending=[True, False]) ) chart: alt.Chart = ( alt.Chart(counts_df) .mark_bar() .encode( x=alt.X("count", title="Frequency"), y=alt.Y(selected_column, title=selected_column, sort=None), tooltip=[selected_column, "count"], ) .properties(title=f"{selected_column} Distribution") .interactive() ) mo.ui.altair_chart(chart) return @app.cell def _(llm_model_choices, mo): llm_tokenizer_selector: mo.ui.dropdown = mo.ui.dropdown( options=llm_model_choices, value=llm_model_choices[0], label="Select LLM Tokenizer Model", ) llm_tokenizer_selector return (llm_tokenizer_selector,) @app.cell def _(AutoTokenizer, PreTrainedTokenizerBase, llm_tokenizer_selector): # Adapted code from: https://huggingface.co/spaces/barttee/tokenizers/blob/main/app.py selected_model_name: str = llm_tokenizer_selector.value tokenizer: PreTrainedTokenizerBase = AutoTokenizer.from_pretrained( selected_model_name ) return (tokenizer,) @app.cell def _(Union, math): TokenStatsDict = dict[str, dict[str, Union[int, float]]] def get_token_stats(tokens: list[str], original_text: str) -> TokenStatsDict: """Calculate enhanced statistics about the tokens.""" if not tokens: # Return default structure matching TokenStatsDict return { "basic_stats": { "total_tokens": 0, "unique_tokens": 0, "compression_ratio": 0.0, "space_tokens": 0, "newline_tokens": 0, "special_tokens": 0, "punctuation_tokens": 0, "unique_percentage": 0.0, }, "length_stats": { "avg_length": 0.0, "std_dev": 0.0, "min_length": 0, "max_length": 0, "median_length": 0.0, }, } total_tokens: int = len(tokens) unique_tokens: int = len(set(tokens)) compression_ratio: float = ( len(original_text) / total_tokens if total_tokens > 0 else 0.0 ) space_tokens: int = sum(1 for t in tokens if t.startswith(("Ġ", " "))) newline_tokens: int = sum( 1 for t in tokens if "Ċ" in t or t == "\n" or t == "<0x0A>" ) special_tokens: int = sum( 1 for t in tokens if (t.startswith("<") and t.endswith(">")) or (t.startswith("[") and t.endswith("]")) ) punctuation_tokens: int = sum( 1 for t in tokens if len(t) == 1 and not t.isalnum() and t not in [" ", "\n", "Ġ", "Ċ"] ) lengths: list[int] = [len(t) for t in tokens] if not lengths: # Should not happen if tokens is not empty, but safe check return { # Return default structure matching TokenStatsDict "basic_stats": { "total_tokens": 0, "unique_tokens": 0, "compression_ratio": 0.0, "space_tokens": 0, "newline_tokens": 0, "special_tokens": 0, "punctuation_tokens": 0, "unique_percentage": 0.0, }, "length_stats": { "avg_length": 0.0, "std_dev": 0.0, "min_length": 0, "max_length": 0, "median_length": 0.0, }, } mean_length: float = sum(lengths) / len(lengths) variance: float = sum((x - mean_length) ** 2 for x in lengths) / len(lengths) std_dev: float = math.sqrt(variance) sorted_lengths: list[int] = sorted(lengths) median_length: float = float(sorted_lengths[len(lengths) // 2]) return { "basic_stats": { "total_tokens": total_tokens, "unique_tokens": unique_tokens, "compression_ratio": round(compression_ratio, 2), "space_tokens": space_tokens, "newline_tokens": newline_tokens, "special_tokens": special_tokens, "punctuation_tokens": punctuation_tokens, "unique_percentage": round(unique_tokens / total_tokens * 100, 1) if total_tokens > 0 else 0.0, }, "length_stats": { "avg_length": round(mean_length, 2), "std_dev": round(std_dev, 2), "min_length": min(lengths), "max_length": max(lengths), "median_length": median_length, }, } return (get_token_stats,) @app.cell def _(hashlib): def get_varied_color(token: str) -> dict[str, str]: """Generate vibrant colors with HSL for better visual distinction.""" token_hash: str = hashlib.md5(token.encode()).hexdigest() hue: int = int(token_hash[:3], 16) % 360 saturation: int = 70 + (int(token_hash[3:5], 16) % 20) lightness: int = 80 + (int(token_hash[5:7], 16) % 10) text_lightness: int = 20 return { "background": f"hsl({hue}, {saturation}%, {lightness}%)", "text": f"hsl({hue}, {saturation}%, {text_lightness}%)", } return (get_varied_color,) @app.function def fix_token( token: str, re ) -> ( str ): # re module type is complex, leave as Any implicitly or import types.ModuleType """Fix token for display, handling byte fallbacks and spaces.""" # Check for byte fallback pattern <0xHH> using a full match byte_match = re.fullmatch(r"<0x([0-9A-Fa-f]{2})>", token) if byte_match: hex_value = byte_match.group(1).upper() # Return a clear representation indicating it's a byte return f"<0x{hex_value}>" # Replace SentencePiece space marker U+2581 (' ') with a middle dot token = token.replace(" ", "·") # Replace BPE space marker 'Ġ' with a middle dot if token.startswith("Ġ"): space_count = token.count("Ġ") # Ensure we only replace the leading 'Ġ' markers return "·" * space_count + token[space_count:] # Replace newline markers for display token = token.replace("Ċ", "↵\n") # Handle byte representation of newline AFTER general byte check # This specific check might become redundant if <0x0A> is caught by the byte_match above # Keep it for now as a fallback. token = token.replace("<0x0A>", "↵\n") return token @app.cell def _(Any, PreTrainedTokenizerBase): def get_tokenizer_info( tokenizer: PreTrainedTokenizerBase, ) -> dict[str, Any]: """ Extract useful information from a tokenizer. Returns a dictionary with tokenizer details. """ info: dict[str, Any] = {} try: if hasattr(tokenizer, "vocab_size"): info["vocab_size"] = tokenizer.vocab_size elif hasattr(tokenizer, "get_vocab"): info["vocab_size"] = len(tokenizer.get_vocab()) if ( hasattr(tokenizer, "model_max_length") and isinstance(tokenizer.model_max_length, int) and tokenizer.model_max_length < 1000000 ): info["model_max_length"] = tokenizer.model_max_length else: info["model_max_length"] = "Not specified or very large" info["tokenizer_type"] = tokenizer.__class__.__name__ special_tokens: dict[str, str] = {} special_token_attributes: list[str] = [ "pad_token", "eos_token", "bos_token", "sep_token", "cls_token", "unk_token", "mask_token", ] processed_tokens: set[str] = ( set() ) # Keep track of processed tokens to avoid duplicates # Prefer all_special_tokens if available if hasattr(tokenizer, "all_special_tokens"): for token_value in tokenizer.all_special_tokens: if ( not token_value or not str(token_value).strip() or str(token_value) in processed_tokens ): continue token_name = "special_token" # Default name # Find the attribute name corresponding to the token value for attr_name in special_token_attributes: if ( hasattr(tokenizer, attr_name) and getattr(tokenizer, attr_name) == token_value ): token_name = attr_name break special_tokens[token_name] = str(token_value) processed_tokens.add(str(token_value)) # Fallback/Augment with individual attributes if not covered by all_special_tokens for token_name in special_token_attributes: if hasattr(tokenizer, token_name): token_value = getattr(tokenizer, token_name) if ( token_value and str(token_value).strip() and str(token_value) not in processed_tokens ): special_tokens[token_name] = str(token_value) processed_tokens.add(str(token_value)) info["special_tokens"] = special_tokens if special_tokens else "None found" except Exception as e: info["error"] = f"Error extracting tokenizer info: {str(e)}" return info return (get_tokenizer_info,) @app.cell def _(mo): show_ids_switch: mo.ui.switch = mo.ui.switch( label="Show token IDs instead of text", value=False ) return (show_ids_switch,) @app.cell def _( Any, Optional, Union, current_text, fix_token, get_token_stats, get_tokenizer_info, get_varied_color, llm_tokenizer_selector, mo, re, show_ids_switch, tokenizer, ): # Define the Unicode replacement character REPLACEMENT_CHARACTER = "\ufffd" # Get tokenizer metadata tokenizer_info: dict[str, Any] = get_tokenizer_info(tokenizer) # 1. Encode text to get token IDs first. token_ids: list[int] = tokenizer.encode(current_text, add_special_tokens=False) # 2. Decode each token ID individually. # We will check for REPLACEMENT_CHARACTER later. all_decoded_tokens: list[str] = [ tokenizer.decode( [token_id], skip_special_tokens=False, clean_up_tokenization_spaces=False ) for token_id in token_ids ] total_token_count: int = len(token_ids) # Count based on IDs # Limit the number of tokens for display display_limit: int = 1000 # Limit consistently using token IDs and the decoded tokens display_token_ids: list[int] = token_ids[:display_limit] display_decoded_tokens: list[str] = all_decoded_tokens[:display_limit] display_limit_reached: bool = total_token_count > display_limit # Generate data for visualization TokenVisData = dict[str, Union[str, int, bool, dict[str, str]]] llm_token_data: list[TokenVisData] = [] # Use zip for parallel iteration for idx, (token_id, token_str) in enumerate( zip(display_token_ids, display_decoded_tokens) ): colors: dict[str, str] = get_varied_color( token_str if REPLACEMENT_CHARACTER not in token_str else f"invalid_{token_id}" ) # Color based on string or ID if invalid is_invalid_utf8 = REPLACEMENT_CHARACTER in token_str fixed_token_display: str original_for_title: str = ( token_str # Store the potentially problematic string for title ) if is_invalid_utf8: # If decode failed, show a representation with the hex ID fixed_token_display = f"<0x{token_id:X}>" else: # If decode succeeded, apply standard fixes fixed_token_display = fix_token(token_str, re) llm_token_data.append( { "original": original_for_title, # Store the raw decoded string (might contain �) "display": fixed_token_display, # Store the cleaned/invalid representation "colors": colors, "is_newline": "↵" in fixed_token_display, # Check the display version "token_id": token_id, "token_index": idx, "is_invalid": is_invalid_utf8, # Add flag for potential styling/title changes } ) # Calculate statistics using the list of *successfully* decoded token strings # We might want to reconsider what `all_tokens` means for stats if many are invalid. # For now, let's use the potentially problematic strings, as stats are mostly length/count based. token_stats: dict[str, dict[str, Union[int, float]]] = get_token_stats( all_decoded_tokens, current_text, # Pass the full list from decode() ) # Construct HTML for colored tokens using list comprehension (functional style) html_parts: list[str] = [ ( lambda item: ( style := f"background-color: {item['colors']['background']}; color: {item['colors']['text']}; padding: 1px 3px; margin: 1px; border-radius: 3px; display: inline-block; white-space: pre-wrap; line-height: 1.4;" # Add specific style for invalid tokens if needed + (" border: 1px solid red;" if item.get("is_invalid") else ""), # Modify title based on validity title := ( f"Original: {item['original']}\nID: {item['token_id']}" + ("\n(Invalid UTF-8)" if item.get("is_invalid") else "") + ("\n(Byte Token)" if item["display"].startswith("byte[") else "") ), display_content := str(item["token_id"]) if show_ids_switch.value else item["display"], f'{display_content}', )[-1] # Get the last element (the formatted string) from the lambda's tuple )(item) for item in llm_token_data ] token_viz_html: mo.Html = mo.Html( f'
{"".join(html_parts)}
' ) # Optional: Add a warning if the display limit was reached limit_warning: Optional[mo.md] = None # Use Optional type if display_limit_reached: limit_warning = mo.md(f"""**Warning:** Displaying only the first {display_limit:,} tokens out of {total_token_count:,}. Statistics are calculated on the full text.""").callout(kind="warn") # Use dict access safely with .get() for stats basic_stats: dict[str, Union[int, float]] = token_stats.get("basic_stats", {}) length_stats: dict[str, Union[int, float]] = token_stats.get("length_stats", {}) # Use list comprehensions for markdown generation (functional style) basic_stats_md: str = "**Basic Stats:**\n\n" + "\n".join( f"- **{key.replace('_', ' ').title()}:** `{value}`" for key, value in basic_stats.items() ) length_stats_md: str = "**Length (Character) Stats:**\n\n" + "\n".join( f"- **{key.replace('_', ' ').title()}:** `{value}`" for key, value in length_stats.items() ) # Build tokenizer info markdown parts tokenizer_info_md_parts: list[str] = [ f"**Tokenizer Type:** `{tokenizer_info.get('tokenizer_type', 'N/A')}`" ] if vocab_size := tokenizer_info.get("vocab_size"): tokenizer_info_md_parts.append(f"**Vocab Size:** `{vocab_size:,}`") if max_len := tokenizer_info.get("model_max_length"): tokenizer_info_md_parts.append(f"**Model Max Length:** `{max_len}`") special_tokens_info = tokenizer_info.get("special_tokens") if isinstance(special_tokens_info, dict) and special_tokens_info: tokenizer_info_md_parts.append("**Special Tokens:**") tokenizer_info_md_parts.extend( f" - `{name}`: `{str(val)}`" for name, val in special_tokens_info.items() ) elif isinstance(special_tokens_info, str): # Handle "None found" case tokenizer_info_md_parts.append(f"**Special Tokens:** `{special_tokens_info}`") if error_info := tokenizer_info.get("error"): tokenizer_info_md_parts.append(f"**Info Error:** `{error_info}`") tokenizer_info_md: str = "\n\n".join(tokenizer_info_md_parts) # Display the final markdown output mo.md(f"""# LLM tokenizer: {llm_tokenizer_selector.value} ## Tokenizer Info {tokenizer_info_md} {show_ids_switch} ## Tokenizer output {limit_warning if limit_warning else ""} {mo.as_html(token_viz_html)} ## Token Statistics (Calculated on full text if truncated above) {basic_stats_md} {length_stats_md} """) return ( all_decoded_tokens, token_ids, basic_stats_md, display_limit_reached, length_stats_md, limit_warning, llm_token_data, token_stats, token_viz_html, tokenizer_info, tokenizer_info_md, total_token_count, ) @app.cell def _(): return if __name__ == "__main__": app.run()