Spaces:
Running
Running
File size: 23,943 Bytes
4d52104 4545835 4d52104 4545835 4d52104 fade8c0 6b833b2 fade8c0 4545835 4d52104 fade8c0 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 4545835 4d52104 6b833b2 4d52104 4545835 6b833b2 4d52104 6b833b2 4d52104 4545835 4d52104 6b833b2 4d52104 4545835 4d52104 4545835 4d52104 6b833b2 4d52104 4545835 6b833b2 4d52104 6b833b2 4d52104 4545835 4d52104 6b833b2 4d52104 4545835 6b833b2 4d52104 4545835 6b833b2 4d52104 4545835 4d52104 4545835 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 4545835 6b833b2 4545835 4d52104 4545835 4d52104 6b833b2 4545835 4d52104 6b833b2 4d52104 d84cd62 4545835 4d52104 4545835 4d52104 6b833b2 4d52104 4545835 4d52104 4545835 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 4545835 6b833b2 4d52104 4545835 4d52104 4545835 4d52104 6b833b2 4d52104 6b833b2 4d52104 4545835 6b833b2 4d52104 6b833b2 4d52104 4545835 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 4545835 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 4545835 4d52104 4545835 4d52104 6b833b2 4d52104 6b833b2 4d52104 4545835 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4545835 4d52104 6b833b2 4d52104 4545835 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 6b833b2 4d52104 4545835 6b833b2 4545835 6b833b2 d84cd62 4545835 6b833b2 4545835 6b833b2 4d52104 4545835 6b833b2 4d52104 4545835 6b833b2 4d52104 4545835 6b833b2 4d52104 4545835 4d52104 6b833b2 4d52104 4545835 4d52104 6b833b2 4545835 4d52104 4545835 4d52104 4545835 4d52104 6b833b2 4545835 4d52104 4545835 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
# /// script
# [tool.marimo.runtime]
# auto_instantiate = false
# ///
import marimo
__generated_with = "0.13.0"
app = marimo.App(width="medium")
@app.cell
def _():
import hashlib
import math
import re
from typing import Any, Callable, Optional, Union
import altair as alt
import marimo as mo
import polars as pl
import spacy
import spacy.language
from transformers import (
AutoTokenizer,
PreTrainedTokenizerBase,
)
# Load spaCy models for English and Japanese
nlp_en: spacy.language.Language = spacy.load("en_core_web_md")
nlp_ja: spacy.language.Language = spacy.load("ja_core_news_md")
# List of tokenizer models
llm_model_choices: list[str] = [
# "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"google/gemma-3-27b-it",
"ibm-granite/granite-3.3-8b-instruct",
"shisa-ai/shisa-v2-qwen2.5-7b",
# "deepseek-ai/DeepSeek-R1",
# "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
# "Qwen/Qwen2.5-72B-Instruct",
# "openai-community/gpt2",
"google-bert/bert-large-uncased",
]
return (
Any,
AutoTokenizer,
Callable,
Optional,
PreTrainedTokenizerBase,
Union,
alt,
hashlib,
llm_model_choices,
math,
mo,
nlp_en,
nlp_ja,
pl,
re,
spacy,
)
@app.cell
def _(mo):
mo.md("""# Tokenization for English and Japanese""")
return
@app.cell
def _(Callable, mo):
# Central state for the text input content
# Type the getter and setter
get_text_content: Callable[[], str]
set_text_content: Callable[[str], None]
get_text_content, set_text_content = mo.state("")
return get_text_content, set_text_content
@app.cell
def _(mo):
# Placeholder texts
en_placeholder = """
Mrs. Ferrars died on the night of the 16th–17th September—a Thursday. I was sent for at eight o’clock on the morning of Friday the 17th. There was nothing to be done. She had been dead some hours.
""".strip()
ja_placeholder = """
吾輩は猫である。名前はまだ無い。
どこで生れたかとんと見当がつかぬ。何でも薄暗いじめじめした所でニャーニャー泣いていた事だけは記憶している。
""".strip()
# Create UI element for language selection
language_selector: mo.ui.radio = mo.ui.radio(
options=["English", "Japanese"], value="English", label="Language"
)
# Return selector and placeholders
return en_placeholder, ja_placeholder, language_selector
@app.cell
def _(
en_placeholder,
get_text_content,
ja_placeholder,
language_selector,
mo,
set_text_content,
):
# Define text_input dynamically based on language
current_placeholder: str = (
en_placeholder if language_selector.value == "English" else ja_placeholder
)
text_input: mo.ui.text_area = mo.ui.text_area(
value=get_text_content(),
label="Enter text",
placeholder=current_placeholder,
full_width=True,
on_change=lambda v: set_text_content(v),
)
# Type the return tuple
return current_placeholder, text_input
@app.cell
def _(Callable, current_placeholder, mo, set_text_content):
# Type the inner function
def apply_placeholder() -> None:
set_text_content(current_placeholder)
apply_placeholder_button: mo.ui.button = mo.ui.button(
label="Use Placeholder Text", on_click=lambda _: apply_placeholder()
)
# Type the return tuple
return (apply_placeholder_button,)
@app.cell
def _(apply_placeholder_button, language_selector, mo, text_input):
mo.vstack(
[
text_input,
mo.hstack([language_selector, apply_placeholder_button], justify="start"),
]
)
return
@app.cell
def _(get_text_content, language_selector, mo, nlp_en, nlp_ja, spacy):
# Analyze text using spaCy based on selected language
current_text: str = get_text_content()
doc: spacy.tokens.Doc
if language_selector.value == "English":
doc = nlp_en(current_text)
else:
doc = nlp_ja(current_text)
model_name: str = (
nlp_en.meta["name"]
if language_selector.value == "English"
else nlp_ja.meta["name"]
)
tokenized_text: list[str] = [token.text for token in doc]
token_count: int = len(tokenized_text)
mo.md(
f"**Tokenized Text using spaCy {'en_' if language_selector.value == 'English' else 'ja_'}{model_name}:** {' | '.join(tokenized_text)}\n\n**Token Count:** {token_count}"
)
return current_text, doc
@app.cell
def _(doc, mo, pl):
token_data: pl.DataFrame = pl.DataFrame(
{
"Token": [token.text for token in doc],
"Lemma": [token.lemma_ for token in doc],
"POS": [token.pos_ for token in doc],
"Tag": [token.tag_ for token in doc],
"Morph": [str(token.morph) for token in doc],
"OOV": [
token.is_oov for token in doc
], # FIXME: How to get .is_oov() from sudachi directly? This only works for English now...
"Token Position": list(range(len(doc))),
"Sentence Number": [
i for i, sent in enumerate(doc.sents) for token in sent
],
}
)
mo.ui.dataframe(token_data, page_size=50)
return (token_data,)
@app.cell
def _(mo):
column_selector: mo.ui.dropdown = mo.ui.dropdown(
options=["POS", "Tag", "Lemma", "Token", "Morph", "OOV"],
value="POS",
label="Select column to visualize",
)
column_selector
return (column_selector,)
@app.cell
def _(alt, column_selector, mo, pl, token_data):
mo.stop(token_data.is_empty(), "Please set input text.")
selected_column: str = column_selector.value
# Calculate value counts for the selected column
counts_df: pl.DataFrame = (
token_data[selected_column]
.value_counts()
.sort(by=["count", selected_column], descending=[True, False])
)
chart: alt.Chart = (
alt.Chart(counts_df)
.mark_bar()
.encode(
x=alt.X("count", title="Frequency"),
y=alt.Y(selected_column, title=selected_column, sort=None),
tooltip=[selected_column, "count"],
)
.properties(title=f"{selected_column} Distribution")
.interactive()
)
mo.ui.altair_chart(chart)
return
@app.cell
def _(llm_model_choices, mo):
llm_tokenizer_selector: mo.ui.dropdown = mo.ui.dropdown(
options=llm_model_choices,
value=llm_model_choices[0],
label="Select LLM Tokenizer Model",
)
llm_tokenizer_selector
return (llm_tokenizer_selector,)
@app.cell
def _(AutoTokenizer, PreTrainedTokenizerBase, llm_tokenizer_selector):
# Adapted code from: https://huggingface.co/spaces/barttee/tokenizers/blob/main/app.py
selected_model_name: str = llm_tokenizer_selector.value
tokenizer: PreTrainedTokenizerBase = AutoTokenizer.from_pretrained(
selected_model_name
)
return (tokenizer,)
@app.cell
def _(Union, math):
TokenStatsDict = dict[str, dict[str, Union[int, float]]]
def get_token_stats(tokens: list[str], original_text: str) -> TokenStatsDict:
"""Calculate enhanced statistics about the tokens."""
if not tokens:
# Return default structure matching TokenStatsDict
return {
"basic_stats": {
"total_tokens": 0,
"unique_tokens": 0,
"compression_ratio": 0.0,
"space_tokens": 0,
"newline_tokens": 0,
"special_tokens": 0,
"punctuation_tokens": 0,
"unique_percentage": 0.0,
},
"length_stats": {
"avg_length": 0.0,
"std_dev": 0.0,
"min_length": 0,
"max_length": 0,
"median_length": 0.0,
},
}
total_tokens: int = len(tokens)
unique_tokens: int = len(set(tokens))
compression_ratio: float = (
len(original_text) / total_tokens if total_tokens > 0 else 0.0
)
space_tokens: int = sum(1 for t in tokens if t.startswith(("Ġ", " ")))
newline_tokens: int = sum(
1 for t in tokens if "Ċ" in t or t == "\n" or t == "<0x0A>"
)
special_tokens: int = sum(
1
for t in tokens
if (t.startswith("<") and t.endswith(">"))
or (t.startswith("[") and t.endswith("]"))
)
punctuation_tokens: int = sum(
1
for t in tokens
if len(t) == 1 and not t.isalnum() and t not in [" ", "\n", "Ġ", "Ċ"]
)
lengths: list[int] = [len(t) for t in tokens]
if not lengths: # Should not happen if tokens is not empty, but safe check
return { # Return default structure matching TokenStatsDict
"basic_stats": {
"total_tokens": 0,
"unique_tokens": 0,
"compression_ratio": 0.0,
"space_tokens": 0,
"newline_tokens": 0,
"special_tokens": 0,
"punctuation_tokens": 0,
"unique_percentage": 0.0,
},
"length_stats": {
"avg_length": 0.0,
"std_dev": 0.0,
"min_length": 0,
"max_length": 0,
"median_length": 0.0,
},
}
mean_length: float = sum(lengths) / len(lengths)
variance: float = sum((x - mean_length) ** 2 for x in lengths) / len(lengths)
std_dev: float = math.sqrt(variance)
sorted_lengths: list[int] = sorted(lengths)
median_length: float = float(sorted_lengths[len(lengths) // 2])
return {
"basic_stats": {
"total_tokens": total_tokens,
"unique_tokens": unique_tokens,
"compression_ratio": round(compression_ratio, 2),
"space_tokens": space_tokens,
"newline_tokens": newline_tokens,
"special_tokens": special_tokens,
"punctuation_tokens": punctuation_tokens,
"unique_percentage": round(unique_tokens / total_tokens * 100, 1)
if total_tokens > 0
else 0.0,
},
"length_stats": {
"avg_length": round(mean_length, 2),
"std_dev": round(std_dev, 2),
"min_length": min(lengths),
"max_length": max(lengths),
"median_length": median_length,
},
}
return (get_token_stats,)
@app.cell
def _(hashlib):
def get_varied_color(token: str) -> dict[str, str]:
"""Generate vibrant colors with HSL for better visual distinction."""
token_hash: str = hashlib.md5(token.encode()).hexdigest()
hue: int = int(token_hash[:3], 16) % 360
saturation: int = 70 + (int(token_hash[3:5], 16) % 20)
lightness: int = 80 + (int(token_hash[5:7], 16) % 10)
text_lightness: int = 20
return {
"background": f"hsl({hue}, {saturation}%, {lightness}%)",
"text": f"hsl({hue}, {saturation}%, {text_lightness}%)",
}
return (get_varied_color,)
@app.function
def fix_token(
token: str, re
) -> (
str
): # re module type is complex, leave as Any implicitly or import types.ModuleType
"""Fix token for display, handling byte fallbacks and spaces."""
# Check for byte fallback pattern <0xHH> using a full match
byte_match = re.fullmatch(r"<0x([0-9A-Fa-f]{2})>", token)
if byte_match:
hex_value = byte_match.group(1).upper()
# Return a clear representation indicating it's a byte
return f"<0x{hex_value}>"
# Replace SentencePiece space marker U+2581 (' ') with a middle dot
token = token.replace(" ", "·")
# Replace BPE space marker 'Ġ' with a middle dot
if token.startswith("Ġ"):
space_count = token.count("Ġ")
# Ensure we only replace the leading 'Ġ' markers
return "·" * space_count + token[space_count:]
# Replace newline markers for display
token = token.replace("Ċ", "↵\n")
# Handle byte representation of newline AFTER general byte check
# This specific check might become redundant if <0x0A> is caught by the byte_match above
# Keep it for now as a fallback.
token = token.replace("<0x0A>", "↵\n")
return token
@app.cell
def _(Any, PreTrainedTokenizerBase):
def get_tokenizer_info(
tokenizer: PreTrainedTokenizerBase,
) -> dict[str, Any]:
"""
Extract useful information from a tokenizer.
Returns a dictionary with tokenizer details.
"""
info: dict[str, Any] = {}
try:
if hasattr(tokenizer, "vocab_size"):
info["vocab_size"] = tokenizer.vocab_size
elif hasattr(tokenizer, "get_vocab"):
info["vocab_size"] = len(tokenizer.get_vocab())
if (
hasattr(tokenizer, "model_max_length")
and isinstance(tokenizer.model_max_length, int)
and tokenizer.model_max_length < 1000000
):
info["model_max_length"] = tokenizer.model_max_length
else:
info["model_max_length"] = "Not specified or very large"
info["tokenizer_type"] = tokenizer.__class__.__name__
special_tokens: dict[str, str] = {}
special_token_attributes: list[str] = [
"pad_token",
"eos_token",
"bos_token",
"sep_token",
"cls_token",
"unk_token",
"mask_token",
]
processed_tokens: set[str] = (
set()
) # Keep track of processed tokens to avoid duplicates
# Prefer all_special_tokens if available
if hasattr(tokenizer, "all_special_tokens"):
for token_value in tokenizer.all_special_tokens:
if (
not token_value
or not str(token_value).strip()
or str(token_value) in processed_tokens
):
continue
token_name = "special_token" # Default name
# Find the attribute name corresponding to the token value
for attr_name in special_token_attributes:
if (
hasattr(tokenizer, attr_name)
and getattr(tokenizer, attr_name) == token_value
):
token_name = attr_name
break
special_tokens[token_name] = str(token_value)
processed_tokens.add(str(token_value))
# Fallback/Augment with individual attributes if not covered by all_special_tokens
for token_name in special_token_attributes:
if hasattr(tokenizer, token_name):
token_value = getattr(tokenizer, token_name)
if (
token_value
and str(token_value).strip()
and str(token_value) not in processed_tokens
):
special_tokens[token_name] = str(token_value)
processed_tokens.add(str(token_value))
info["special_tokens"] = special_tokens if special_tokens else "None found"
except Exception as e:
info["error"] = f"Error extracting tokenizer info: {str(e)}"
return info
return (get_tokenizer_info,)
@app.cell
def _(mo):
show_ids_switch: mo.ui.switch = mo.ui.switch(
label="Show token IDs instead of text", value=False
)
return (show_ids_switch,)
@app.cell
def _(
Any,
Optional,
Union,
current_text,
fix_token,
get_token_stats,
get_tokenizer_info,
get_varied_color,
llm_tokenizer_selector,
mo,
re,
show_ids_switch,
tokenizer,
):
# Define the Unicode replacement character
REPLACEMENT_CHARACTER = "\ufffd"
# Get tokenizer metadata
tokenizer_info: dict[str, Any] = get_tokenizer_info(tokenizer)
# 1. Encode text to get token IDs first.
token_ids: list[int] = tokenizer.encode(current_text, add_special_tokens=False)
# 2. Decode each token ID individually.
# We will check for REPLACEMENT_CHARACTER later.
all_decoded_tokens: list[str] = [
tokenizer.decode(
[token_id], skip_special_tokens=False, clean_up_tokenization_spaces=False
)
for token_id in token_ids
]
total_token_count: int = len(token_ids) # Count based on IDs
# Limit the number of tokens for display
display_limit: int = 1000
# Limit consistently using token IDs and the decoded tokens
display_token_ids: list[int] = token_ids[:display_limit]
display_decoded_tokens: list[str] = all_decoded_tokens[:display_limit]
display_limit_reached: bool = total_token_count > display_limit
# Generate data for visualization
TokenVisData = dict[str, Union[str, int, bool, dict[str, str]]]
llm_token_data: list[TokenVisData] = []
# Use zip for parallel iteration
for idx, (token_id, token_str) in enumerate(
zip(display_token_ids, display_decoded_tokens)
):
colors: dict[str, str] = get_varied_color(
token_str
if REPLACEMENT_CHARACTER not in token_str
else f"invalid_{token_id}"
) # Color based on string or ID if invalid
is_invalid_utf8 = REPLACEMENT_CHARACTER in token_str
fixed_token_display: str
original_for_title: str = (
token_str # Store the potentially problematic string for title
)
if is_invalid_utf8:
# If decode failed, show a representation with the hex ID
fixed_token_display = f"<0x{token_id:X}>"
else:
# If decode succeeded, apply standard fixes
fixed_token_display = fix_token(token_str, re)
llm_token_data.append(
{
"original": original_for_title, # Store the raw decoded string (might contain �)
"display": fixed_token_display, # Store the cleaned/invalid representation
"colors": colors,
"is_newline": "↵" in fixed_token_display, # Check the display version
"token_id": token_id,
"token_index": idx,
"is_invalid": is_invalid_utf8, # Add flag for potential styling/title changes
}
)
# Calculate statistics using the list of *successfully* decoded token strings
# We might want to reconsider what `all_tokens` means for stats if many are invalid.
# For now, let's use the potentially problematic strings, as stats are mostly length/count based.
token_stats: dict[str, dict[str, Union[int, float]]] = get_token_stats(
all_decoded_tokens,
current_text, # Pass the full list from decode()
)
# Construct HTML for colored tokens using list comprehension (functional style)
html_parts: list[str] = [
(
lambda item: (
style
:= f"background-color: {item['colors']['background']}; color: {item['colors']['text']}; padding: 1px 3px; margin: 1px; border-radius: 3px; display: inline-block; white-space: pre-wrap; line-height: 1.4;"
# Add specific style for invalid tokens if needed
+ (" border: 1px solid red;" if item.get("is_invalid") else ""),
# Modify title based on validity
title := (
f"Original: {item['original']}\nID: {item['token_id']}"
+ ("\n(Invalid UTF-8)" if item.get("is_invalid") else "")
+ ("\n(Byte Token)" if item["display"].startswith("byte[") else "")
),
display_content := str(item["token_id"])
if show_ids_switch.value
else item["display"],
f'<span style="{style}" title="{title}">{display_content}</span>',
)[-1] # Get the last element (the formatted string) from the lambda's tuple
)(item)
for item in llm_token_data
]
token_viz_html: mo.Html = mo.Html(
f'<div style="line-height: 1.6;">{"".join(html_parts)}</div>'
)
# Optional: Add a warning if the display limit was reached
limit_warning: Optional[mo.md] = None # Use Optional type
if display_limit_reached:
limit_warning = mo.md(f"""**Warning:** Displaying only the first {display_limit:,} tokens out of {total_token_count:,}.
Statistics are calculated on the full text.""").callout(kind="warn")
# Use dict access safely with .get() for stats
basic_stats: dict[str, Union[int, float]] = token_stats.get("basic_stats", {})
length_stats: dict[str, Union[int, float]] = token_stats.get("length_stats", {})
# Use list comprehensions for markdown generation (functional style)
basic_stats_md: str = "**Basic Stats:**\n\n" + "\n".join(
f"- **{key.replace('_', ' ').title()}:** `{value}`"
for key, value in basic_stats.items()
)
length_stats_md: str = "**Length (Character) Stats:**\n\n" + "\n".join(
f"- **{key.replace('_', ' ').title()}:** `{value}`"
for key, value in length_stats.items()
)
# Build tokenizer info markdown parts
tokenizer_info_md_parts: list[str] = [
f"**Tokenizer Type:** `{tokenizer_info.get('tokenizer_type', 'N/A')}`"
]
if vocab_size := tokenizer_info.get("vocab_size"):
tokenizer_info_md_parts.append(f"**Vocab Size:** `{vocab_size:,}`")
if max_len := tokenizer_info.get("model_max_length"):
tokenizer_info_md_parts.append(f"**Model Max Length:** `{max_len}`")
special_tokens_info = tokenizer_info.get("special_tokens")
if isinstance(special_tokens_info, dict) and special_tokens_info:
tokenizer_info_md_parts.append("**Special Tokens:**")
tokenizer_info_md_parts.extend(
f" - `{name}`: `{str(val)}`" for name, val in special_tokens_info.items()
)
elif isinstance(special_tokens_info, str): # Handle "None found" case
tokenizer_info_md_parts.append(f"**Special Tokens:** `{special_tokens_info}`")
if error_info := tokenizer_info.get("error"):
tokenizer_info_md_parts.append(f"**Info Error:** `{error_info}`")
tokenizer_info_md: str = "\n\n".join(tokenizer_info_md_parts)
# Display the final markdown output
mo.md(f"""# LLM tokenizer: {llm_tokenizer_selector.value}
## Tokenizer Info
{tokenizer_info_md}
{show_ids_switch}
## Tokenizer output
{limit_warning if limit_warning else ""}
{mo.as_html(token_viz_html)}
## Token Statistics
(Calculated on full text if truncated above)
{basic_stats_md}
{length_stats_md}
""")
return (
all_decoded_tokens,
token_ids,
basic_stats_md,
display_limit_reached,
length_stats_md,
limit_warning,
llm_token_data,
token_stats,
token_viz_html,
tokenizer_info,
tokenizer_info_md,
total_token_count,
)
@app.cell
def _():
return
if __name__ == "__main__":
app.run()
|