File size: 15,316 Bytes
ea6a5ed 9bc4638 6e871ac ea6a5ed 6e871ac ea6a5ed 9bc4638 6e871ac ea6a5ed 6e871ac ea6a5ed 9bc4638 ea6a5ed 6e871ac 9bc4638 ea6a5ed 9bc4638 ea6a5ed 6e60611 b950bc5 ea6a5ed b950bc5 5bc3a57 ea6a5ed 9bc4638 ea6a5ed 9bc4638 0b34400 9bc4638 ea6a5ed e508568 ea6a5ed e508568 9bc4638 ea6a5ed 6e871ac ea6a5ed 9bc4638 ea6a5ed 0b34400 ea6a5ed 9bc4638 ea6a5ed 9bc4638 ea6a5ed 9bc4638 b950bc5 ea6a5ed b950bc5 ea6a5ed 9bc4638 ea6a5ed 9bc4638 ea6a5ed 9bc4638 ea6a5ed 6e871ac ea6a5ed 9bc4638 ea6a5ed 9bc4638 ea6a5ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
from datetime import datetime
import tempfile
import cv2
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import torch
from moviepy.editor import ImageSequenceClip
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor
# Remove CUDA environment variables
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
del os.environ["TORCH_CUDNN_SDPA_ENABLED"]
# UI Description
title = "<center><strong><font size='8'>EdgeTAM CPU</font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a></center>"
description_p = """# Instructions
<ol>
<li>Upload one video or click one example video</li>
<li>Click 'include' point type, select the object to segment and track</li>
<li>Click 'exclude' point type (optional), select the area to avoid segmenting</li>
<li>Click the 'Track' button to obtain the masked video</li>
</ol>
"""
# Example videos
examples = [
["examples/01_dog.mp4"],
["examples/02_cups.mp4"],
["examples/03_blocks.mp4"],
["examples/04_coffee.mp4"],
["examples/05_default_juggle.mp4"],
]
OBJ_ID = 0
# Initialize model on CPU
sam2_checkpoint = "checkpoints/edgetam.pt"
model_cfg = "edgetam.yaml"
def check_file_exists(filepath):
exists = os.path.exists(filepath)
if not exists:
print(f"WARNING: File not found: {filepath}")
return exists
# Verify model files
model_files_exist = check_file_exists(sam2_checkpoint) and check_file_exists(model_cfg)
try:
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
print("Predictor loaded on CPU")
except Exception as e:
print(f"Error loading model: {e}")
import traceback
traceback.print_exc()
predictor = None
# Utility Functions
def get_video_fps(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return 30.0
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return fps
def reset(session_state):
session_state["input_points"] = []
session_state["input_labels"] = []
if session_state["inference_state"] is not None:
predictor.reset_state(session_state["inference_state"])
session_state["first_frame"] = None
session_state["all_frames"] = None
session_state["inference_state"] = None
return (
None,
gr.update(open=True),
None,
None,
gr.update(value=None, visible=False),
session_state,
)
def clear_points(session_state):
session_state["input_points"] = []
session_state["input_labels"] = []
if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
predictor.reset_state(session_state["inference_state"])
return (
session_state["first_frame"],
None,
gr.update(value=None, visible=False),
session_state,
)
def preprocess_video_in(video_path, session_state):
if video_path is None:
return (
gr.update(open=True),
None,
None,
gr.update(value=None, visible=False),
session_state,
)
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return (
gr.update(open=True),
None,
None,
gr.update(value=None, visible=False),
session_state,
)
# Video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Resize for CPU performance
target_width = 640
scale_factor = 1.0
if frame_width > target_width:
scale_factor = target_width / frame_width
frame_width = target_width
frame_height = int(frame_height * scale_factor)
# Read frames with stride for CPU optimization
frame_number = 0
first_frame = None
all_frames = []
frame_stride = max(1, total_frames // 300) # Limit to ~300 frames
while True:
ret, frame = cap.read()
if not ret:
break
if frame_number % frame_stride == 0:
if scale_factor != 1.0:
frame = cv2.resize(frame, (frame_width, frame_height), interpolation=cv2.INTER_AREA)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if first_frame is None:
first_frame = frame
all_frames.append(frame)
frame_number += 1
cap.release()
session_state["first_frame"] = copy.deepcopy(first_frame)
session_state["all_frames"] = all_frames
session_state["frame_stride"] = frame_stride
session_state["scale_factor"] = scale_factor
session_state["original_dimensions"] = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
session_state["inference_state"] = predictor.init_state(video_path=video_path)
session_state["input_points"] = []
session_state["input_labels"] = []
return [
gr.update(open=False),
first_frame,
None,
gr.update(value=None, visible=False),
session_state,
]
def segment_with_points(point_type, session_state, evt: gr.SelectData):
session_state["input_points"].append(evt.index)
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
if point_type == "include":
session_state["input_labels"].append(1)
elif point_type == "exclude":
session_state["input_labels"].append(0)
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
first_frame = session_state["first_frame"]
h, w = first_frame.shape[:2]
transparent_background = Image.fromarray(first_frame).convert("RGBA")
# Draw points
fraction = 0.01
radius = int(fraction * min(w, h))
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(session_state["input_points"]):
color = (0, 255, 0, 255) if session_state["input_labels"][index] == 1 else (255, 0, 0, 255)
cv2.circle(transparent_layer, track, radius, color, -1)
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
points = np.array(session_state["input_points"], dtype=np.float32)
labels = np.array(session_state["input_labels"], np.int32)
try:
_, _, out_mask_logits = predictor.add_new_points(
inference_state=session_state["inference_state"],
frame_idx=0,
obj_id=OBJ_ID,
points=points,
labels=labels,
)
mask_array = (out_mask_logits[0] > 0.0).cpu().numpy()
# Ensure mask matches frame size
if mask_array.shape[:2] != (h, w):
mask_array = cv2.resize(mask_array.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
mask_image = show_mask(mask_array)
if mask_image.size != transparent_background.size:
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
except Exception as e:
print(f"Error in segmentation: {e}")
first_frame_output = selected_point_map
return selected_point_map, first_frame_output, session_state
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:] if len(mask.shape) > 2 else mask.shape
mask_reshaped = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
mask_rgba = (mask_reshaped * 255).astype(np.uint8)
if convert_to_image:
try:
if mask_rgba.shape[2] != 4:
proper_mask = np.zeros((h, w, 4), dtype=np.uint8)
proper_mask[:, :, :min(mask_rgba.shape[2], 4)] = mask_rgba[:, :, :min(mask_rgba.shape[2], 4)]
mask_rgba = proper_mask
return Image.fromarray(mask_rgba, "RGBA")
except Exception as e:
print(f"Error converting mask to image: {e}")
return Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8), "RGBA")
return mask_rgba
def propagate_to_all(video_in, session_state, progress=gr.Progress()):
if len(session_state["input_points"]) == 0 or video_in is None or session_state["inference_state"] is None:
return gr.update(value=None, visible=False), session_state
chunk_size = 3
try:
video_segments = {}
total_frames = len(session_state["all_frames"])
progress(0, desc="Propagating segmentation through video...")
for i, (out_frame_idx, out_obj_ids, out_mask_logit) in enumerate(predictor.propagate_in_video(session_state["inference_state"])):
try:
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logit[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
progress((i + 1) / total_frames, desc=f"Processed frame {out_frame_idx}/{total_frames}")
if out_frame_idx % chunk_size == 0:
del out_mask_logit
import gc
gc.collect()
except Exception as e:
print(f"Error processing frame {out_frame_idx}: {e}")
continue
max_output_frames = 50
vis_frame_stride = max(1, total_frames // max_output_frames)
first_frame = session_state["all_frames"][0]
h, w = first_frame.shape[:2]
output_frames = []
for out_frame_idx in range(0, total_frames, vis_frame_stride):
if out_frame_idx not in video_segments or OBJ_ID not in video_segments[out_frame_idx]:
continue
try:
frame = session_state["all_frames"][out_frame_idx]
transparent_background = Image.fromarray(frame).convert("RGBA")
out_mask = video_segments[out_frame_idx][OBJ_ID]
# Validate mask dimensions
if out_mask.shape[:2] != (h, w):
if out_mask.size == 0: # Skip empty masks
print(f"Skipping empty mask for frame {out_frame_idx}")
continue
out_mask = cv2.resize(out_mask.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
mask_image = show_mask(out_mask)
if mask_image.size != transparent_background.size:
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
output_frame = Image.alpha_composite(transparent_background, mask_image)
output_frames.append(np.array(output_frame))
if len(output_frames) % 10 == 0:
import gc
gc.collect()
except Exception as e:
print(f"Error creating output frame {out_frame_idx}: {e_RAW
traceback.print_exc()
continue
original_fps = get_video_fps(video_in)
fps = min(original_fps, 15) # Cap at 15 FPS for CPU
clip = ImageSequenceClip(output_frames, fps=fps)
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
final_vid_output_path = os.path.join(tempfile.gettempdir(), f"output_video_{unique_id}.mp4")
clip.write_videofile(
final_vid_output_path,
codec="libx264",
bitrate="800k",
threads=2,
logger=None
)
del video_segments, output_frames
import gc
gc.collect()
return gr.update(value=final_vid_output_path, visible=True), session_state
except Exception as e:
print(f"Error in propagate_to_all: {e}")
return gr.update(value=None, visible=False), session_state
def update_ui():
return gr.update(visible=True)
# Gradio Interface
with gr.Blocks() as demo:
session_state = gr.State({
"first_frame": None,
"all_frames": None,
"input_points": [],
"input_labels": [],
"inference_state": None,
"frame_stride": 1,
"scale_factor": 1.0,
"original_dimensions": None,
})
with gr.Column():
gr.Markdown(title)
with gr.Row():
with gr.Column():
gr.Markdown(description_p)
with gr.Accordion("Input Video", open=True) as video_in_drawer:
video_in = gr.Video(label="Input Video", format="mp4")
with gr.Row():
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
propagate_btn = gr.Button("Track", scale=1, variant="primary")
clear_points_btn = gr.Button("Clear Points", scale=1)
reset_btn = gr.Button("Reset", scale=1)
points_map = gr.Image(label="Frame with Point Prompt", type="numpy", interactive=False)
with gr.Column():
gr.Markdown("# Try some of the examples below ⬇️")
gr.Examples(examples=examples, inputs=[video_in], examples_per_page=5)
output_image = gr.Image(label="Reference Mask")
output_video = gr.Video(visible=False)
video_in.upload(
fn=preprocess_video_in,
inputs=[video_in, session_state],
outputs=[video_in_drawer, points_map, output_image, output_video, session_state],
queue=False,
)
video_in.change(
fn=preprocess_video_in,
inputs=[video_in, session_state],
outputs=[video_in_drawer, points_map, output_image, output_video, session_state],
queue=False,
)
points_map.select(
fn=segment_with_points,
inputs=[point_type, session_state],
outputs=[points_map, output_image, session_state],
queue=False,
)
clear_points_btn.click(
fn=clear_points,
inputs=session_state,
outputs=[points_map, output_image, output_video, session_state],
queue=False,
)
reset_btn.click(
fn=reset,
inputs=session_state,
outputs=[video_in, video_in_drawer, points_map, output_image, output_video, session_state],
queue=False,
)
propagate_btn.click(
fn=update_ui,
inputs=[],
outputs=output_video,
queue=False,
).then(
fn=propagate_to_all,
inputs=[video_in, session_state],
outputs=[output_video, session_state],
queue=True,
)
demo.queue()
demo.launch() |