Spaces:
bla
/
Runtime error

File size: 15,316 Bytes
ea6a5ed
 
 
 
 
9bc4638
6e871ac
ea6a5ed
6e871ac
ea6a5ed
9bc4638
 
6e871ac
ea6a5ed
6e871ac
ea6a5ed
9bc4638
ea6a5ed
6e871ac
9bc4638
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc4638
ea6a5ed
6e60611
 
b950bc5
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b950bc5
5bc3a57
ea6a5ed
 
9bc4638
ea6a5ed
 
 
9bc4638
0b34400
9bc4638
 
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e508568
ea6a5ed
 
 
 
 
 
 
 
 
e508568
9bc4638
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
6e871ac
 
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc4638
 
ea6a5ed
 
 
 
 
0b34400
ea6a5ed
 
 
 
 
9bc4638
ea6a5ed
 
 
 
 
9bc4638
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc4638
b950bc5
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b950bc5
ea6a5ed
 
9bc4638
ea6a5ed
9bc4638
ea6a5ed
 
 
 
 
 
 
9bc4638
ea6a5ed
 
 
 
 
6e871ac
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc4638
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc4638
ea6a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import os
from datetime import datetime
import tempfile

import cv2
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import torch
from moviepy.editor import ImageSequenceClip
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor

# Remove CUDA environment variables
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
    del os.environ["TORCH_CUDNN_SDPA_ENABLED"]

# UI Description
title = "<center><strong><font size='8'>EdgeTAM CPU</font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a></center>"

description_p = """# Instructions
                <ol>
                <li>Upload one video or click one example video</li>
                <li>Click 'include' point type, select the object to segment and track</li>
                <li>Click 'exclude' point type (optional), select the area to avoid segmenting</li>
                <li>Click the 'Track' button to obtain the masked video</li>
                </ol>
              """

# Example videos
examples = [
    ["examples/01_dog.mp4"],
    ["examples/02_cups.mp4"],
    ["examples/03_blocks.mp4"],
    ["examples/04_coffee.mp4"],
    ["examples/05_default_juggle.mp4"],
]

OBJ_ID = 0

# Initialize model on CPU
sam2_checkpoint = "checkpoints/edgetam.pt"
model_cfg = "edgetam.yaml"

def check_file_exists(filepath):
    exists = os.path.exists(filepath)
    if not exists:
        print(f"WARNING: File not found: {filepath}")
    return exists

# Verify model files
model_files_exist = check_file_exists(sam2_checkpoint) and check_file_exists(model_cfg)
try:
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
    print("Predictor loaded on CPU")
except Exception as e:
    print(f"Error loading model: {e}")
    import traceback
    traceback.print_exc()
    predictor = None

# Utility Functions
def get_video_fps(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print("Error: Could not open video.")
        return 30.0
    fps = cap.get(cv2.CAP_PROP_FPS)
    cap.release()
    return fps

def reset(session_state):
    session_state["input_points"] = []
    session_state["input_labels"] = []
    if session_state["inference_state"] is not None:
        predictor.reset_state(session_state["inference_state"])
    session_state["first_frame"] = None
    session_state["all_frames"] = None
    session_state["inference_state"] = None
    return (
        None,
        gr.update(open=True),
        None,
        None,
        gr.update(value=None, visible=False),
        session_state,
    )

def clear_points(session_state):
    session_state["input_points"] = []
    session_state["input_labels"] = []
    if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
        predictor.reset_state(session_state["inference_state"])
    return (
        session_state["first_frame"],
        None,
        gr.update(value=None, visible=False),
        session_state,
    )

def preprocess_video_in(video_path, session_state):
    if video_path is None:
        return (
            gr.update(open=True),
            None,
            None,
            gr.update(value=None, visible=False),
            session_state,
        )

    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print("Error: Could not open video.")
        return (
            gr.update(open=True),
            None,
            None,
            gr.update(value=None, visible=False),
            session_state,
        )

    # Video properties
    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # Resize for CPU performance
    target_width = 640
    scale_factor = 1.0
    if frame_width > target_width:
        scale_factor = target_width / frame_width
        frame_width = target_width
        frame_height = int(frame_height * scale_factor)

    # Read frames with stride for CPU optimization
    frame_number = 0
    first_frame = None
    all_frames = []
    frame_stride = max(1, total_frames // 300)  # Limit to ~300 frames

    while True:
        ret, frame = cap.read()
        if not ret:
            break
        if frame_number % frame_stride == 0:
            if scale_factor != 1.0:
                frame = cv2.resize(frame, (frame_width, frame_height), interpolation=cv2.INTER_AREA)
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            if first_frame is None:
                first_frame = frame
            all_frames.append(frame)
        frame_number += 1

    cap.release()
    session_state["first_frame"] = copy.deepcopy(first_frame)
    session_state["all_frames"] = all_frames
    session_state["frame_stride"] = frame_stride
    session_state["scale_factor"] = scale_factor
    session_state["original_dimensions"] = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))

    session_state["inference_state"] = predictor.init_state(video_path=video_path)
    session_state["input_points"] = []
    session_state["input_labels"] = []

    return [
        gr.update(open=False),
        first_frame,
        None,
        gr.update(value=None, visible=False),
        session_state,
    ]

def segment_with_points(point_type, session_state, evt: gr.SelectData):
    session_state["input_points"].append(evt.index)
    print(f"TRACKING INPUT POINT: {session_state['input_points']}")

    if point_type == "include":
        session_state["input_labels"].append(1)
    elif point_type == "exclude":
        session_state["input_labels"].append(0)
    print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")

    first_frame = session_state["first_frame"]
    h, w = first_frame.shape[:2]
    transparent_background = Image.fromarray(first_frame).convert("RGBA")

    # Draw points
    fraction = 0.01
    radius = int(fraction * min(w, h))
    transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)

    for index, track in enumerate(session_state["input_points"]):
        color = (0, 255, 0, 255) if session_state["input_labels"][index] == 1 else (255, 0, 0, 255)
        cv2.circle(transparent_layer, track, radius, color, -1)

    transparent_layer = Image.fromarray(transparent_layer, "RGBA")
    selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)

    points = np.array(session_state["input_points"], dtype=np.float32)
    labels = np.array(session_state["input_labels"], np.int32)

    try:
        _, _, out_mask_logits = predictor.add_new_points(
            inference_state=session_state["inference_state"],
            frame_idx=0,
            obj_id=OBJ_ID,
            points=points,
            labels=labels,
        )
        mask_array = (out_mask_logits[0] > 0.0).cpu().numpy()
        
        # Ensure mask matches frame size
        if mask_array.shape[:2] != (h, w):
            mask_array = cv2.resize(mask_array.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
        
        mask_image = show_mask(mask_array)
        if mask_image.size != transparent_background.size:
            mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
        
        first_frame_output = Image.alpha_composite(transparent_background, mask_image)
    except Exception as e:
        print(f"Error in segmentation: {e}")
        first_frame_output = selected_point_map

    return selected_point_map, first_frame_output, session_state

def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        cmap = plt.get_cmap("tab10")
        cmap_idx = 0 if obj_id is None else obj_id
        color = np.array([*cmap(cmap_idx)[:3], 0.6])

    h, w = mask.shape[-2:] if len(mask.shape) > 2 else mask.shape
    mask_reshaped = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    mask_rgba = (mask_reshaped * 255).astype(np.uint8)

    if convert_to_image:
        try:
            if mask_rgba.shape[2] != 4:
                proper_mask = np.zeros((h, w, 4), dtype=np.uint8)
                proper_mask[:, :, :min(mask_rgba.shape[2], 4)] = mask_rgba[:, :, :min(mask_rgba.shape[2], 4)]
                mask_rgba = proper_mask
            return Image.fromarray(mask_rgba, "RGBA")
        except Exception as e:
            print(f"Error converting mask to image: {e}")
            return Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8), "RGBA")
    
    return mask_rgba

def propagate_to_all(video_in, session_state, progress=gr.Progress()):
    if len(session_state["input_points"]) == 0 or video_in is None or session_state["inference_state"] is None:
        return gr.update(value=None, visible=False), session_state

    chunk_size = 3
    try:
        video_segments = {}
        total_frames = len(session_state["all_frames"])
        progress(0, desc="Propagating segmentation through video...")

        for i, (out_frame_idx, out_obj_ids, out_mask_logit) in enumerate(predictor.propagate_in_video(session_state["inference_state"])):
            try:
                video_segments[out_frame_idx] = {
                    out_obj_id: (out_mask_logit[i] > 0.0).cpu().numpy()
                    for i, out_obj_id in enumerate(out_obj_ids)
                }
                progress((i + 1) / total_frames, desc=f"Processed frame {out_frame_idx}/{total_frames}")
                if out_frame_idx % chunk_size == 0:
                    del out_mask_logit
                    import gc
                    gc.collect()
            except Exception as e:
                print(f"Error processing frame {out_frame_idx}: {e}")
                continue

        max_output_frames = 50
        vis_frame_stride = max(1, total_frames // max_output_frames)
        first_frame = session_state["all_frames"][0]
        h, w = first_frame.shape[:2]
        output_frames = []

        for out_frame_idx in range(0, total_frames, vis_frame_stride):
            if out_frame_idx not in video_segments or OBJ_ID not in video_segments[out_frame_idx]:
                continue
            try:
                frame = session_state["all_frames"][out_frame_idx]
                transparent_background = Image.fromarray(frame).convert("RGBA")
                out_mask = video_segments[out_frame_idx][OBJ_ID]

                # Validate mask dimensions
                if out_mask.shape[:2] != (h, w):
                    if out_mask.size == 0:  # Skip empty masks
                        print(f"Skipping empty mask for frame {out_frame_idx}")
                        continue
                    out_mask = cv2.resize(out_mask.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)

                mask_image = show_mask(out_mask)
                if mask_image.size != transparent_background.size:
                    mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)

                output_frame = Image.alpha_composite(transparent_background, mask_image)
                output_frames.append(np.array(output_frame))

                if len(output_frames) % 10 == 0:
                    import gc
                    gc.collect()
            except Exception as e:
                print(f"Error creating output frame {out_frame_idx}: {e_RAW
                traceback.print_exc()
                continue

        original_fps = get_video_fps(video_in)
        fps = min(original_fps, 15)  # Cap at 15 FPS for CPU

        clip = ImageSequenceClip(output_frames, fps=fps)
        unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
        final_vid_output_path = os.path.join(tempfile.gettempdir(), f"output_video_{unique_id}.mp4")

        clip.write_videofile(
            final_vid_output_path,
            codec="libx264",
            bitrate="800k",
            threads=2,
            logger=None
        )

        del video_segments, output_frames
        import gc
        gc.collect()

        return gr.update(value=final_vid_output_path, visible=True), session_state

    except Exception as e:
        print(f"Error in propagate_to_all: {e}")
        return gr.update(value=None, visible=False), session_state

def update_ui():
    return gr.update(visible=True)

# Gradio Interface
with gr.Blocks() as demo:
    session_state = gr.State({
        "first_frame": None,
        "all_frames": None,
        "input_points": [],
        "input_labels": [],
        "inference_state": None,
        "frame_stride": 1,
        "scale_factor": 1.0,
        "original_dimensions": None,
    })

    with gr.Column():
        gr.Markdown(title)
        with gr.Row():
            with gr.Column():
                gr.Markdown(description_p)
                with gr.Accordion("Input Video", open=True) as video_in_drawer:
                    video_in = gr.Video(label="Input Video", format="mp4")
                with gr.Row():
                    point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
                    propagate_btn = gr.Button("Track", scale=1, variant="primary")
                    clear_points_btn = gr.Button("Clear Points", scale=1)
                    reset_btn = gr.Button("Reset", scale=1)
                points_map = gr.Image(label="Frame with Point Prompt", type="numpy", interactive=False)
            with gr.Column():
                gr.Markdown("# Try some of the examples below ⬇️")
                gr.Examples(examples=examples, inputs=[video_in], examples_per_page=5)
                output_image = gr.Image(label="Reference Mask")
                output_video = gr.Video(visible=False)

    video_in.upload(
        fn=preprocess_video_in,
        inputs=[video_in, session_state],
        outputs=[video_in_drawer, points_map, output_image, output_video, session_state],
        queue=False,
    )

    video_in.change(
        fn=preprocess_video_in,
        inputs=[video_in, session_state],
        outputs=[video_in_drawer, points_map, output_image, output_video, session_state],
        queue=False,
    )

    points_map.select(
        fn=segment_with_points,
        inputs=[point_type, session_state],
        outputs=[points_map, output_image, session_state],
        queue=False,
    )

    clear_points_btn.click(
        fn=clear_points,
        inputs=session_state,
        outputs=[points_map, output_image, output_video, session_state],
        queue=False,
    )

    reset_btn.click(
        fn=reset,
        inputs=session_state,
        outputs=[video_in, video_in_drawer, points_map, output_image, output_video, session_state],
        queue=False,
    )

    propagate_btn.click(
        fn=update_ui,
        inputs=[],
        outputs=output_video,
        queue=False,
    ).then(
        fn=propagate_to_all,
        inputs=[video_in, session_state],
        outputs=[output_video, session_state],
        queue=True,
    )

demo.queue()
demo.launch()