Spaces:
Runtime error
Runtime error
from typing import Union, List | |
import os | |
import re | |
import time | |
import concurrent | |
import lora_patches | |
import network | |
import network_lora | |
import network_hada | |
import network_ia3 | |
import network_oft | |
import network_lokr | |
import network_full | |
import network_norm | |
import network_glora | |
import lora_convert | |
import torch | |
import diffusers.models.lora | |
from modules import shared, devices, sd_models, sd_models_compile, errors, scripts, files_cache | |
debug = os.environ.get('SD_LORA_DEBUG', None) is not None | |
originals: lora_patches.LoraPatches = None | |
extra_network_lora = None | |
available_networks = {} | |
available_network_aliases = {} | |
loaded_networks: List[network.Network] = [] | |
timer = { 'load': 0, 'apply': 0, 'restore': 0 } | |
# networks_in_memory = {} | |
lora_cache = {} | |
available_network_hash_lookup = {} | |
forbidden_network_aliases = {} | |
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)") | |
module_types = [ | |
network_lora.ModuleTypeLora(), | |
network_hada.ModuleTypeHada(), | |
network_ia3.ModuleTypeIa3(), | |
network_oft.ModuleTypeOFT(), | |
network_lokr.ModuleTypeLokr(), | |
network_full.ModuleTypeFull(), | |
network_norm.ModuleTypeNorm(), | |
network_glora.ModuleTypeGLora(), | |
] | |
convert_diffusers_name_to_compvis = lora_convert.convert_diffusers_name_to_compvis # supermerger compatibility item | |
def assign_network_names_to_compvis_modules(sd_model): | |
network_layer_mapping = {} | |
if shared.backend == shared.Backend.DIFFUSERS: | |
if not hasattr(shared.sd_model, 'text_encoder') or not hasattr(shared.sd_model, 'unet'): | |
return | |
for name, module in shared.sd_model.text_encoder.named_modules(): | |
prefix = "lora_te1_" if shared.sd_model_type == "sdxl" else "lora_te_" | |
network_name = prefix + name.replace(".", "_") | |
network_layer_mapping[network_name] = module | |
module.network_layer_name = network_name | |
if shared.sd_model_type == "sdxl": | |
for name, module in shared.sd_model.text_encoder_2.named_modules(): | |
network_name = "lora_te2_" + name.replace(".", "_") | |
network_layer_mapping[network_name] = module | |
module.network_layer_name = network_name | |
for name, module in shared.sd_model.unet.named_modules(): | |
network_name = "lora_unet_" + name.replace(".", "_") | |
network_layer_mapping[network_name] = module | |
module.network_layer_name = network_name | |
else: | |
if not hasattr(shared.sd_model, 'cond_stage_model'): | |
return | |
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): | |
network_name = name.replace(".", "_") | |
network_layer_mapping[network_name] = module | |
module.network_layer_name = network_name | |
for name, module in shared.sd_model.model.named_modules(): | |
network_name = name.replace(".", "_") | |
network_layer_mapping[network_name] = module | |
module.network_layer_name = network_name | |
sd_model.network_layer_mapping = network_layer_mapping | |
def load_diffusers(name, network_on_disk, lora_scale=1.0) -> network.Network: | |
t0 = time.time() | |
cached = lora_cache.get(name, None) | |
# if debug: | |
shared.log.debug(f'LoRA load: name="{name}" file="{network_on_disk.filename}" type=diffusers {"cached" if cached else ""} fuse={shared.opts.lora_fuse_diffusers}') | |
if cached is not None: | |
return cached | |
if shared.backend != shared.Backend.DIFFUSERS: | |
return None | |
shared.sd_model.load_lora_weights(network_on_disk.filename) | |
if shared.opts.lora_fuse_diffusers: | |
shared.sd_model.fuse_lora(lora_scale=lora_scale) | |
net = network.Network(name, network_on_disk) | |
net.mtime = os.path.getmtime(network_on_disk.filename) | |
lora_cache[name] = net | |
t1 = time.time() | |
timer['load'] += t1 - t0 | |
return net | |
def load_network(name, network_on_disk) -> network.Network: | |
t0 = time.time() | |
cached = lora_cache.get(name, None) | |
if debug: | |
shared.log.debug(f'LoRA load: name="{name}" file="{network_on_disk.filename}" type=lora {"cached" if cached else ""}') | |
if cached is not None: | |
return cached | |
net = network.Network(name, network_on_disk) | |
net.mtime = os.path.getmtime(network_on_disk.filename) | |
sd = sd_models.read_state_dict(network_on_disk.filename) | |
assign_network_names_to_compvis_modules(shared.sd_model) # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0 | |
keys_failed_to_match = {} | |
matched_networks = {} | |
convert = lora_convert.KeyConvert() | |
for key_network, weight in sd.items(): | |
parts = key_network.split('.') | |
if len(parts) > 5: # messy handler for diffusers peft lora | |
key_network_without_network_parts = '_'.join(parts[:-2]) | |
if not key_network_without_network_parts.startswith('lora_'): | |
key_network_without_network_parts = 'lora_' + key_network_without_network_parts | |
network_part = '.'.join(parts[-2:]).replace('lora_A', 'lora_down').replace('lora_B', 'lora_up') | |
else: | |
key_network_without_network_parts, network_part = key_network.split(".", 1) | |
# if debug: | |
# shared.log.debug(f'LoRA load: name="{name}" full={key_network} network={network_part} key={key_network_without_network_parts}') | |
key, sd_module = convert(key_network_without_network_parts) # Now returns lists | |
if sd_module[0] is None: | |
keys_failed_to_match[key_network] = key | |
continue | |
for k, module in zip(key, sd_module): | |
if k not in matched_networks: | |
matched_networks[k] = network.NetworkWeights(network_key=key_network, sd_key=k, w={}, sd_module=module) | |
matched_networks[k].w[network_part] = weight | |
for key, weights in matched_networks.items(): | |
net_module = None | |
for nettype in module_types: | |
net_module = nettype.create_module(net, weights) | |
if net_module is not None: | |
break | |
if net_module is None: | |
shared.log.error(f'LoRA unhandled: name={name} key={key} weights={weights.w.keys()}') | |
else: | |
net.modules[key] = net_module | |
if len(keys_failed_to_match) > 0: | |
shared.log.warning(f"LoRA file={network_on_disk.filename} unmatched={len(keys_failed_to_match)} matched={len(matched_networks)}") | |
if debug: | |
shared.log.debug(f"LoRA file={network_on_disk.filename} unmatched={keys_failed_to_match}") | |
elif debug: | |
shared.log.debug(f"LoRA file={network_on_disk.filename} unmatched={len(keys_failed_to_match)} matched={len(matched_networks)}") | |
lora_cache[name] = net | |
t1 = time.time() | |
timer['load'] += t1 - t0 | |
return net | |
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None): | |
networks_on_disk = [available_network_aliases.get(name, None) for name in names] | |
if any(x is None for x in networks_on_disk): | |
list_available_networks() | |
networks_on_disk = [available_network_aliases.get(name, None) for name in names] | |
failed_to_load_networks = [] | |
recompile_model = False | |
if shared.compiled_model_state is not None and shared.compiled_model_state.is_compiled: | |
if len(names) == len(shared.compiled_model_state.lora_model): | |
for i, name in enumerate(names): | |
if shared.compiled_model_state.lora_model[i] != f"{name}:{te_multipliers[i] if te_multipliers else 1.0}": | |
recompile_model = True | |
shared.compiled_model_state.lora_model = [] | |
break | |
if not recompile_model: | |
if len(loaded_networks) > 0 and debug: | |
shared.log.debug('Model Compile: Skipping LoRa loading') | |
return | |
else: | |
recompile_model = True | |
shared.compiled_model_state.lora_model = [] | |
if recompile_model: | |
backup_cuda_compile = shared.opts.cuda_compile | |
backup_nncf_compress_weights = shared.opts.nncf_compress_weights | |
sd_models.unload_model_weights(op='model') | |
shared.opts.cuda_compile = False | |
shared.opts.nncf_compress_weights = [] | |
sd_models.reload_model_weights(op='model') | |
shared.opts.cuda_compile = backup_cuda_compile | |
shared.opts.nncf_compress_weights = backup_nncf_compress_weights | |
loaded_networks.clear() | |
for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)): | |
net = None | |
if network_on_disk is not None: | |
if debug: | |
shared.log.debug(f'LoRA load start: name="{name}" file="{network_on_disk.filename}"') | |
try: | |
if recompile_model: | |
shared.compiled_model_state.lora_model.append(f"{name}:{te_multipliers[i] if te_multipliers else 1.0}") | |
shorthash = getattr(network_on_disk, 'shorthash', '').lower() | |
if shared.backend == shared.Backend.DIFFUSERS and (shared.opts.lora_force_diffusers # OpenVINO only works with Diffusers LoRa loading. | |
or shorthash == 'aaebf6360f7d' # sd15-lcm | |
or shorthash == '3d18b05e4f56' # sdxl-lcm | |
or shorthash == 'b71dcb732467' # sdxl-tcd | |
or shorthash == '813ea5fb1c67' # sdxl-turbo | |
): | |
net = load_diffusers(name, network_on_disk, lora_scale=te_multipliers[i] if te_multipliers else 1.0) | |
else: | |
net = load_network(name, network_on_disk) | |
except Exception as e: | |
shared.log.error(f"LoRA load failed: file={network_on_disk.filename} {e}") | |
if debug: | |
errors.display(e, f"LoRA load failed file={network_on_disk.filename}") | |
continue | |
net.mentioned_name = name | |
network_on_disk.read_hash() | |
if net is None: | |
failed_to_load_networks.append(name) | |
shared.log.error(f"LoRA unknown type: network={name}") | |
continue | |
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0 | |
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0 | |
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0 | |
loaded_networks.append(net) | |
while len(lora_cache) > shared.opts.lora_in_memory_limit: | |
name = next(iter(lora_cache)) | |
lora_cache.pop(name, None) | |
if len(loaded_networks) > 0 and debug: | |
shared.log.debug(f'LoRA loaded={len(loaded_networks)} cache={list(lora_cache)}') | |
devices.torch_gc() | |
if recompile_model: | |
shared.log.info("LoRA recompiling model") | |
backup_lora_model = shared.compiled_model_state.lora_model | |
if shared.opts.nncf_compress_weights and not (shared.opts.cuda_compile and shared.opts.cuda_compile_backend == "openvino_fx"): | |
shared.sd_model = sd_models_compile.nncf_compress_weights(shared.sd_model) | |
if shared.opts.cuda_compile: | |
shared.sd_model = sd_models_compile.compile_diffusers(shared.sd_model) | |
shared.compiled_model_state.lora_model = backup_lora_model | |
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention, diffusers.models.lora.LoRACompatibleLinear, diffusers.models.lora.LoRACompatibleConv]): | |
t0 = time.time() | |
weights_backup = getattr(self, "network_weights_backup", None) | |
bias_backup = getattr(self, "network_bias_backup", None) | |
if weights_backup is None and bias_backup is None: | |
return | |
# if debug: | |
# shared.log.debug('LoRA restore weights') | |
if weights_backup is not None: | |
if isinstance(self, torch.nn.MultiheadAttention): | |
self.in_proj_weight.copy_(weights_backup[0]) | |
self.out_proj.weight.copy_(weights_backup[1]) | |
else: | |
self.weight.copy_(weights_backup) | |
if bias_backup is not None: | |
if isinstance(self, torch.nn.MultiheadAttention): | |
self.out_proj.bias.copy_(bias_backup) | |
else: | |
self.bias.copy_(bias_backup) | |
else: | |
if isinstance(self, torch.nn.MultiheadAttention): | |
self.out_proj.bias = None | |
else: | |
self.bias = None | |
t1 = time.time() | |
timer['restore'] += t1 - t0 | |
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention, diffusers.models.lora.LoRACompatibleLinear, diffusers.models.lora.LoRACompatibleConv]): | |
""" | |
Applies the currently selected set of networks to the weights of torch layer self. | |
If weights already have this particular set of networks applied, does nothing. | |
If not, restores orginal weights from backup and alters weights according to networks. | |
""" | |
network_layer_name = getattr(self, 'network_layer_name', None) | |
if network_layer_name is None: | |
return | |
t0 = time.time() | |
current_names = getattr(self, "network_current_names", ()) | |
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks) | |
weights_backup = getattr(self, "network_weights_backup", None) | |
if weights_backup is None and wanted_names != (): # pylint: disable=C1803 | |
if current_names != (): | |
raise RuntimeError("no backup weights found and current weights are not unchanged") | |
if isinstance(self, torch.nn.MultiheadAttention): | |
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True)) | |
else: | |
weights_backup = self.weight.to(devices.cpu, copy=True) | |
self.network_weights_backup = weights_backup | |
bias_backup = getattr(self, "network_bias_backup", None) | |
if bias_backup is None: | |
if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None: | |
bias_backup = self.out_proj.bias.to(devices.cpu, copy=True) | |
elif getattr(self, 'bias', None) is not None: | |
bias_backup = self.bias.to(devices.cpu, copy=True) | |
else: | |
bias_backup = None | |
self.network_bias_backup = bias_backup | |
if current_names != wanted_names: | |
network_restore_weights_from_backup(self) | |
for net in loaded_networks: | |
# default workflow where module is known and has weights | |
module = net.modules.get(network_layer_name, None) | |
if module is not None and hasattr(self, 'weight'): | |
try: | |
with devices.inference_context(): | |
updown, ex_bias = module.calc_updown(self.weight) | |
if len(self.weight.shape) == 4 and self.weight.shape[1] == 9: | |
# inpainting model. zero pad updown to make channel[1] 4 to 9 | |
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) # pylint: disable=not-callable | |
self.weight = torch.nn.Parameter(self.weight + updown) | |
if ex_bias is not None and hasattr(self, 'bias'): | |
if self.bias is None: | |
self.bias = torch.nn.Parameter(ex_bias) | |
else: | |
self.bias += ex_bias | |
except RuntimeError as e: | |
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 | |
if debug: | |
module_name = net.modules.get(network_layer_name, None) | |
shared.log.error(f"LoRA apply weight name={net.name} module={module_name} layer={network_layer_name} {e}") | |
errors.display(e, 'LoRA apply weight') | |
raise RuntimeError('LoRA apply weight') from e | |
continue | |
# alternative workflow looking at _*_proj layers | |
module_q = net.modules.get(network_layer_name + "_q_proj", None) | |
module_k = net.modules.get(network_layer_name + "_k_proj", None) | |
module_v = net.modules.get(network_layer_name + "_v_proj", None) | |
module_out = net.modules.get(network_layer_name + "_out_proj", None) | |
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out: | |
try: | |
with devices.inference_context(): | |
updown_q, _ = module_q.calc_updown(self.in_proj_weight) | |
updown_k, _ = module_k.calc_updown(self.in_proj_weight) | |
updown_v, _ = module_v.calc_updown(self.in_proj_weight) | |
updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) | |
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight) | |
self.in_proj_weight += updown_qkv | |
self.out_proj.weight += updown_out | |
if ex_bias is not None: | |
if self.out_proj.bias is None: | |
self.out_proj.bias = torch.nn.Parameter(ex_bias) | |
else: | |
self.out_proj.bias += ex_bias | |
except RuntimeError as e: | |
if debug: | |
shared.log.debug(f"LoRA network={net.name} layer={network_layer_name} {e}") | |
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 | |
continue | |
if module is None: | |
continue | |
shared.log.warning(f"LoRA network={net.name} layer={network_layer_name} unsupported operation") | |
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 | |
self.network_current_names = wanted_names | |
t1 = time.time() | |
timer['apply'] += t1 - t0 | |
def network_forward(module, input, original_forward): # pylint: disable=W0622 | |
""" | |
Old way of applying Lora by executing operations during layer's forward. | |
Stacking many loras this way results in big performance degradation. | |
""" | |
if len(loaded_networks) == 0: | |
return original_forward(module, input) | |
input = devices.cond_cast_unet(input) | |
network_restore_weights_from_backup(module) | |
network_reset_cached_weight(module) | |
y = original_forward(module, input) | |
network_layer_name = getattr(module, 'network_layer_name', None) | |
for lora in loaded_networks: | |
module = lora.modules.get(network_layer_name, None) | |
if module is None: | |
continue | |
y = module.forward(input, y) | |
return y | |
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): | |
self.network_current_names = () | |
self.network_weights_backup = None | |
def network_Linear_forward(self, input): # pylint: disable=W0622 | |
if shared.opts.lora_functional: | |
return network_forward(self, input, originals.Linear_forward) | |
network_apply_weights(self) | |
return originals.Linear_forward(self, input) | |
def network_Linear_load_state_dict(self, *args, **kwargs): | |
network_reset_cached_weight(self) | |
return originals.Linear_load_state_dict(self, *args, **kwargs) | |
def network_Conv2d_forward(self, input): # pylint: disable=W0622 | |
if shared.opts.lora_functional: | |
return network_forward(self, input, originals.Conv2d_forward) | |
network_apply_weights(self) | |
return originals.Conv2d_forward(self, input) | |
def network_Conv2d_load_state_dict(self, *args, **kwargs): | |
network_reset_cached_weight(self) | |
return originals.Conv2d_load_state_dict(self, *args, **kwargs) | |
def network_GroupNorm_forward(self, input): # pylint: disable=W0622 | |
if shared.opts.lora_functional: | |
return network_forward(self, input, originals.GroupNorm_forward) | |
network_apply_weights(self) | |
return originals.GroupNorm_forward(self, input) | |
def network_GroupNorm_load_state_dict(self, *args, **kwargs): | |
network_reset_cached_weight(self) | |
return originals.GroupNorm_load_state_dict(self, *args, **kwargs) | |
def network_LayerNorm_forward(self, input): # pylint: disable=W0622 | |
if shared.opts.lora_functional: | |
return network_forward(self, input, originals.LayerNorm_forward) | |
network_apply_weights(self) | |
return originals.LayerNorm_forward(self, input) | |
def network_LayerNorm_load_state_dict(self, *args, **kwargs): | |
network_reset_cached_weight(self) | |
return originals.LayerNorm_load_state_dict(self, *args, **kwargs) | |
def network_MultiheadAttention_forward(self, *args, **kwargs): | |
network_apply_weights(self) | |
return originals.MultiheadAttention_forward(self, *args, **kwargs) | |
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs): | |
network_reset_cached_weight(self) | |
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs) | |
def list_available_networks(): | |
available_networks.clear() | |
available_network_aliases.clear() | |
forbidden_network_aliases.clear() | |
available_network_hash_lookup.clear() | |
forbidden_network_aliases.update({"none": 1, "Addams": 1}) | |
directories = [] | |
if os.path.exists(shared.cmd_opts.lora_dir): | |
directories.append(shared.cmd_opts.lora_dir) | |
else: | |
shared.log.warning(f'LoRA directory not found: path="{shared.cmd_opts.lora_dir}"') | |
if os.path.exists(shared.cmd_opts.lyco_dir) and shared.cmd_opts.lyco_dir != shared.cmd_opts.lora_dir: | |
directories.append(shared.cmd_opts.lyco_dir) | |
def add_network(filename): | |
if not os.path.isfile(filename): | |
return | |
name = os.path.splitext(os.path.basename(filename))[0] | |
try: | |
entry = network.NetworkOnDisk(name, filename) | |
available_networks[entry.name] = entry | |
if entry.alias in available_network_aliases: | |
forbidden_network_aliases[entry.alias.lower()] = 1 | |
if shared.opts.lora_preferred_name == 'filename': | |
available_network_aliases[entry.name] = entry | |
else: | |
available_network_aliases[entry.alias] = entry | |
if entry.shorthash: | |
available_network_hash_lookup[entry.shorthash] = entry | |
except OSError as e: # should catch FileNotFoundError and PermissionError etc. | |
shared.log.error(f"Failed to load network {name} from {filename} {e}") | |
candidates = list(files_cache.list_files(*directories, ext_filter=[".pt", ".ckpt", ".safetensors"])) | |
with concurrent.futures.ThreadPoolExecutor(max_workers=shared.max_workers) as executor: | |
for fn in candidates: | |
executor.submit(add_network, fn) | |
shared.log.info(f'LoRA networks: available={len(available_networks)} folders={len(forbidden_network_aliases)}') | |
def infotext_pasted(infotext, params): # pylint: disable=W0613 | |
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]: | |
return # if the other extension is active, it will handle those fields, no need to do anything | |
added = [] | |
for k in params: | |
if not k.startswith("AddNet Model "): | |
continue | |
num = k[13:] | |
if params.get("AddNet Module " + num) != "LoRA": | |
continue | |
name = params.get("AddNet Model " + num) | |
if name is None: | |
continue | |
m = re_network_name.match(name) | |
if m: | |
name = m.group(1) | |
multiplier = params.get("AddNet Weight A " + num, "1.0") | |
added.append(f"<lora:{name}:{multiplier}>") | |
if added: | |
params["Prompt"] += "\n" + "".join(added) | |
list_available_networks() | |