Spaces:
Runtime error
Runtime error
File size: 24,188 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
from typing import Union, List
import os
import re
import time
import concurrent
import lora_patches
import network
import network_lora
import network_hada
import network_ia3
import network_oft
import network_lokr
import network_full
import network_norm
import network_glora
import lora_convert
import torch
import diffusers.models.lora
from modules import shared, devices, sd_models, sd_models_compile, errors, scripts, files_cache
debug = os.environ.get('SD_LORA_DEBUG', None) is not None
originals: lora_patches.LoraPatches = None
extra_network_lora = None
available_networks = {}
available_network_aliases = {}
loaded_networks: List[network.Network] = []
timer = { 'load': 0, 'apply': 0, 'restore': 0 }
# networks_in_memory = {}
lora_cache = {}
available_network_hash_lookup = {}
forbidden_network_aliases = {}
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
module_types = [
network_lora.ModuleTypeLora(),
network_hada.ModuleTypeHada(),
network_ia3.ModuleTypeIa3(),
network_oft.ModuleTypeOFT(),
network_lokr.ModuleTypeLokr(),
network_full.ModuleTypeFull(),
network_norm.ModuleTypeNorm(),
network_glora.ModuleTypeGLora(),
]
convert_diffusers_name_to_compvis = lora_convert.convert_diffusers_name_to_compvis # supermerger compatibility item
def assign_network_names_to_compvis_modules(sd_model):
network_layer_mapping = {}
if shared.backend == shared.Backend.DIFFUSERS:
if not hasattr(shared.sd_model, 'text_encoder') or not hasattr(shared.sd_model, 'unet'):
return
for name, module in shared.sd_model.text_encoder.named_modules():
prefix = "lora_te1_" if shared.sd_model_type == "sdxl" else "lora_te_"
network_name = prefix + name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
if shared.sd_model_type == "sdxl":
for name, module in shared.sd_model.text_encoder_2.named_modules():
network_name = "lora_te2_" + name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
for name, module in shared.sd_model.unet.named_modules():
network_name = "lora_unet_" + name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
else:
if not hasattr(shared.sd_model, 'cond_stage_model'):
return
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
for name, module in shared.sd_model.model.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
sd_model.network_layer_mapping = network_layer_mapping
def load_diffusers(name, network_on_disk, lora_scale=1.0) -> network.Network:
t0 = time.time()
cached = lora_cache.get(name, None)
# if debug:
shared.log.debug(f'LoRA load: name="{name}" file="{network_on_disk.filename}" type=diffusers {"cached" if cached else ""} fuse={shared.opts.lora_fuse_diffusers}')
if cached is not None:
return cached
if shared.backend != shared.Backend.DIFFUSERS:
return None
shared.sd_model.load_lora_weights(network_on_disk.filename)
if shared.opts.lora_fuse_diffusers:
shared.sd_model.fuse_lora(lora_scale=lora_scale)
net = network.Network(name, network_on_disk)
net.mtime = os.path.getmtime(network_on_disk.filename)
lora_cache[name] = net
t1 = time.time()
timer['load'] += t1 - t0
return net
def load_network(name, network_on_disk) -> network.Network:
t0 = time.time()
cached = lora_cache.get(name, None)
if debug:
shared.log.debug(f'LoRA load: name="{name}" file="{network_on_disk.filename}" type=lora {"cached" if cached else ""}')
if cached is not None:
return cached
net = network.Network(name, network_on_disk)
net.mtime = os.path.getmtime(network_on_disk.filename)
sd = sd_models.read_state_dict(network_on_disk.filename)
assign_network_names_to_compvis_modules(shared.sd_model) # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
keys_failed_to_match = {}
matched_networks = {}
convert = lora_convert.KeyConvert()
for key_network, weight in sd.items():
parts = key_network.split('.')
if len(parts) > 5: # messy handler for diffusers peft lora
key_network_without_network_parts = '_'.join(parts[:-2])
if not key_network_without_network_parts.startswith('lora_'):
key_network_without_network_parts = 'lora_' + key_network_without_network_parts
network_part = '.'.join(parts[-2:]).replace('lora_A', 'lora_down').replace('lora_B', 'lora_up')
else:
key_network_without_network_parts, network_part = key_network.split(".", 1)
# if debug:
# shared.log.debug(f'LoRA load: name="{name}" full={key_network} network={network_part} key={key_network_without_network_parts}')
key, sd_module = convert(key_network_without_network_parts) # Now returns lists
if sd_module[0] is None:
keys_failed_to_match[key_network] = key
continue
for k, module in zip(key, sd_module):
if k not in matched_networks:
matched_networks[k] = network.NetworkWeights(network_key=key_network, sd_key=k, w={}, sd_module=module)
matched_networks[k].w[network_part] = weight
for key, weights in matched_networks.items():
net_module = None
for nettype in module_types:
net_module = nettype.create_module(net, weights)
if net_module is not None:
break
if net_module is None:
shared.log.error(f'LoRA unhandled: name={name} key={key} weights={weights.w.keys()}')
else:
net.modules[key] = net_module
if len(keys_failed_to_match) > 0:
shared.log.warning(f"LoRA file={network_on_disk.filename} unmatched={len(keys_failed_to_match)} matched={len(matched_networks)}")
if debug:
shared.log.debug(f"LoRA file={network_on_disk.filename} unmatched={keys_failed_to_match}")
elif debug:
shared.log.debug(f"LoRA file={network_on_disk.filename} unmatched={len(keys_failed_to_match)} matched={len(matched_networks)}")
lora_cache[name] = net
t1 = time.time()
timer['load'] += t1 - t0
return net
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
failed_to_load_networks = []
recompile_model = False
if shared.compiled_model_state is not None and shared.compiled_model_state.is_compiled:
if len(names) == len(shared.compiled_model_state.lora_model):
for i, name in enumerate(names):
if shared.compiled_model_state.lora_model[i] != f"{name}:{te_multipliers[i] if te_multipliers else 1.0}":
recompile_model = True
shared.compiled_model_state.lora_model = []
break
if not recompile_model:
if len(loaded_networks) > 0 and debug:
shared.log.debug('Model Compile: Skipping LoRa loading')
return
else:
recompile_model = True
shared.compiled_model_state.lora_model = []
if recompile_model:
backup_cuda_compile = shared.opts.cuda_compile
backup_nncf_compress_weights = shared.opts.nncf_compress_weights
sd_models.unload_model_weights(op='model')
shared.opts.cuda_compile = False
shared.opts.nncf_compress_weights = []
sd_models.reload_model_weights(op='model')
shared.opts.cuda_compile = backup_cuda_compile
shared.opts.nncf_compress_weights = backup_nncf_compress_weights
loaded_networks.clear()
for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
net = None
if network_on_disk is not None:
if debug:
shared.log.debug(f'LoRA load start: name="{name}" file="{network_on_disk.filename}"')
try:
if recompile_model:
shared.compiled_model_state.lora_model.append(f"{name}:{te_multipliers[i] if te_multipliers else 1.0}")
shorthash = getattr(network_on_disk, 'shorthash', '').lower()
if shared.backend == shared.Backend.DIFFUSERS and (shared.opts.lora_force_diffusers # OpenVINO only works with Diffusers LoRa loading.
or shorthash == 'aaebf6360f7d' # sd15-lcm
or shorthash == '3d18b05e4f56' # sdxl-lcm
or shorthash == 'b71dcb732467' # sdxl-tcd
or shorthash == '813ea5fb1c67' # sdxl-turbo
):
net = load_diffusers(name, network_on_disk, lora_scale=te_multipliers[i] if te_multipliers else 1.0)
else:
net = load_network(name, network_on_disk)
except Exception as e:
shared.log.error(f"LoRA load failed: file={network_on_disk.filename} {e}")
if debug:
errors.display(e, f"LoRA load failed file={network_on_disk.filename}")
continue
net.mentioned_name = name
network_on_disk.read_hash()
if net is None:
failed_to_load_networks.append(name)
shared.log.error(f"LoRA unknown type: network={name}")
continue
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
loaded_networks.append(net)
while len(lora_cache) > shared.opts.lora_in_memory_limit:
name = next(iter(lora_cache))
lora_cache.pop(name, None)
if len(loaded_networks) > 0 and debug:
shared.log.debug(f'LoRA loaded={len(loaded_networks)} cache={list(lora_cache)}')
devices.torch_gc()
if recompile_model:
shared.log.info("LoRA recompiling model")
backup_lora_model = shared.compiled_model_state.lora_model
if shared.opts.nncf_compress_weights and not (shared.opts.cuda_compile and shared.opts.cuda_compile_backend == "openvino_fx"):
shared.sd_model = sd_models_compile.nncf_compress_weights(shared.sd_model)
if shared.opts.cuda_compile:
shared.sd_model = sd_models_compile.compile_diffusers(shared.sd_model)
shared.compiled_model_state.lora_model = backup_lora_model
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention, diffusers.models.lora.LoRACompatibleLinear, diffusers.models.lora.LoRACompatibleConv]):
t0 = time.time()
weights_backup = getattr(self, "network_weights_backup", None)
bias_backup = getattr(self, "network_bias_backup", None)
if weights_backup is None and bias_backup is None:
return
# if debug:
# shared.log.debug('LoRA restore weights')
if weights_backup is not None:
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
if bias_backup is not None:
if isinstance(self, torch.nn.MultiheadAttention):
self.out_proj.bias.copy_(bias_backup)
else:
self.bias.copy_(bias_backup)
else:
if isinstance(self, torch.nn.MultiheadAttention):
self.out_proj.bias = None
else:
self.bias = None
t1 = time.time()
timer['restore'] += t1 - t0
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention, diffusers.models.lora.LoRACompatibleLinear, diffusers.models.lora.LoRACompatibleConv]):
"""
Applies the currently selected set of networks to the weights of torch layer self.
If weights already have this particular set of networks applied, does nothing.
If not, restores orginal weights from backup and alters weights according to networks.
"""
network_layer_name = getattr(self, 'network_layer_name', None)
if network_layer_name is None:
return
t0 = time.time()
current_names = getattr(self, "network_current_names", ())
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
weights_backup = getattr(self, "network_weights_backup", None)
if weights_backup is None and wanted_names != (): # pylint: disable=C1803
if current_names != ():
raise RuntimeError("no backup weights found and current weights are not unchanged")
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.network_weights_backup = weights_backup
bias_backup = getattr(self, "network_bias_backup", None)
if bias_backup is None:
if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
elif getattr(self, 'bias', None) is not None:
bias_backup = self.bias.to(devices.cpu, copy=True)
else:
bias_backup = None
self.network_bias_backup = bias_backup
if current_names != wanted_names:
network_restore_weights_from_backup(self)
for net in loaded_networks:
# default workflow where module is known and has weights
module = net.modules.get(network_layer_name, None)
if module is not None and hasattr(self, 'weight'):
try:
with devices.inference_context():
updown, ex_bias = module.calc_updown(self.weight)
if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
# inpainting model. zero pad updown to make channel[1] 4 to 9
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) # pylint: disable=not-callable
self.weight = torch.nn.Parameter(self.weight + updown)
if ex_bias is not None and hasattr(self, 'bias'):
if self.bias is None:
self.bias = torch.nn.Parameter(ex_bias)
else:
self.bias += ex_bias
except RuntimeError as e:
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
if debug:
module_name = net.modules.get(network_layer_name, None)
shared.log.error(f"LoRA apply weight name={net.name} module={module_name} layer={network_layer_name} {e}")
errors.display(e, 'LoRA apply weight')
raise RuntimeError('LoRA apply weight') from e
continue
# alternative workflow looking at _*_proj layers
module_q = net.modules.get(network_layer_name + "_q_proj", None)
module_k = net.modules.get(network_layer_name + "_k_proj", None)
module_v = net.modules.get(network_layer_name + "_v_proj", None)
module_out = net.modules.get(network_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
try:
with devices.inference_context():
updown_q, _ = module_q.calc_updown(self.in_proj_weight)
updown_k, _ = module_k.calc_updown(self.in_proj_weight)
updown_v, _ = module_v.calc_updown(self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
self.in_proj_weight += updown_qkv
self.out_proj.weight += updown_out
if ex_bias is not None:
if self.out_proj.bias is None:
self.out_proj.bias = torch.nn.Parameter(ex_bias)
else:
self.out_proj.bias += ex_bias
except RuntimeError as e:
if debug:
shared.log.debug(f"LoRA network={net.name} layer={network_layer_name} {e}")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
continue
if module is None:
continue
shared.log.warning(f"LoRA network={net.name} layer={network_layer_name} unsupported operation")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
self.network_current_names = wanted_names
t1 = time.time()
timer['apply'] += t1 - t0
def network_forward(module, input, original_forward): # pylint: disable=W0622
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_networks) == 0:
return original_forward(module, input)
input = devices.cond_cast_unet(input)
network_restore_weights_from_backup(module)
network_reset_cached_weight(module)
y = original_forward(module, input)
network_layer_name = getattr(module, 'network_layer_name', None)
for lora in loaded_networks:
module = lora.modules.get(network_layer_name, None)
if module is None:
continue
y = module.forward(input, y)
return y
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
self.network_current_names = ()
self.network_weights_backup = None
def network_Linear_forward(self, input): # pylint: disable=W0622
if shared.opts.lora_functional:
return network_forward(self, input, originals.Linear_forward)
network_apply_weights(self)
return originals.Linear_forward(self, input)
def network_Linear_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.Linear_load_state_dict(self, *args, **kwargs)
def network_Conv2d_forward(self, input): # pylint: disable=W0622
if shared.opts.lora_functional:
return network_forward(self, input, originals.Conv2d_forward)
network_apply_weights(self)
return originals.Conv2d_forward(self, input)
def network_Conv2d_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.Conv2d_load_state_dict(self, *args, **kwargs)
def network_GroupNorm_forward(self, input): # pylint: disable=W0622
if shared.opts.lora_functional:
return network_forward(self, input, originals.GroupNorm_forward)
network_apply_weights(self)
return originals.GroupNorm_forward(self, input)
def network_GroupNorm_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.GroupNorm_load_state_dict(self, *args, **kwargs)
def network_LayerNorm_forward(self, input): # pylint: disable=W0622
if shared.opts.lora_functional:
return network_forward(self, input, originals.LayerNorm_forward)
network_apply_weights(self)
return originals.LayerNorm_forward(self, input)
def network_LayerNorm_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.LayerNorm_load_state_dict(self, *args, **kwargs)
def network_MultiheadAttention_forward(self, *args, **kwargs):
network_apply_weights(self)
return originals.MultiheadAttention_forward(self, *args, **kwargs)
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
def list_available_networks():
available_networks.clear()
available_network_aliases.clear()
forbidden_network_aliases.clear()
available_network_hash_lookup.clear()
forbidden_network_aliases.update({"none": 1, "Addams": 1})
directories = []
if os.path.exists(shared.cmd_opts.lora_dir):
directories.append(shared.cmd_opts.lora_dir)
else:
shared.log.warning(f'LoRA directory not found: path="{shared.cmd_opts.lora_dir}"')
if os.path.exists(shared.cmd_opts.lyco_dir) and shared.cmd_opts.lyco_dir != shared.cmd_opts.lora_dir:
directories.append(shared.cmd_opts.lyco_dir)
def add_network(filename):
if not os.path.isfile(filename):
return
name = os.path.splitext(os.path.basename(filename))[0]
try:
entry = network.NetworkOnDisk(name, filename)
available_networks[entry.name] = entry
if entry.alias in available_network_aliases:
forbidden_network_aliases[entry.alias.lower()] = 1
if shared.opts.lora_preferred_name == 'filename':
available_network_aliases[entry.name] = entry
else:
available_network_aliases[entry.alias] = entry
if entry.shorthash:
available_network_hash_lookup[entry.shorthash] = entry
except OSError as e: # should catch FileNotFoundError and PermissionError etc.
shared.log.error(f"Failed to load network {name} from {filename} {e}")
candidates = list(files_cache.list_files(*directories, ext_filter=[".pt", ".ckpt", ".safetensors"]))
with concurrent.futures.ThreadPoolExecutor(max_workers=shared.max_workers) as executor:
for fn in candidates:
executor.submit(add_network, fn)
shared.log.info(f'LoRA networks: available={len(available_networks)} folders={len(forbidden_network_aliases)}')
def infotext_pasted(infotext, params): # pylint: disable=W0613
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
return # if the other extension is active, it will handle those fields, no need to do anything
added = []
for k in params:
if not k.startswith("AddNet Model "):
continue
num = k[13:]
if params.get("AddNet Module " + num) != "LoRA":
continue
name = params.get("AddNet Model " + num)
if name is None:
continue
m = re_network_name.match(name)
if m:
name = m.group(1)
multiplier = params.get("AddNet Weight A " + num, "1.0")
added.append(f"<lora:{name}:{multiplier}>")
if added:
params["Prompt"] += "\n" + "".join(added)
list_available_networks()
|