File size: 24,188 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from typing import Union, List
import os
import re
import time
import concurrent
import lora_patches
import network
import network_lora
import network_hada
import network_ia3
import network_oft
import network_lokr
import network_full
import network_norm
import network_glora
import lora_convert
import torch
import diffusers.models.lora
from modules import shared, devices, sd_models, sd_models_compile, errors, scripts, files_cache


debug = os.environ.get('SD_LORA_DEBUG', None) is not None
originals: lora_patches.LoraPatches = None
extra_network_lora = None
available_networks = {}
available_network_aliases = {}
loaded_networks: List[network.Network] = []
timer = { 'load': 0, 'apply': 0, 'restore': 0 }
# networks_in_memory = {}
lora_cache = {}
available_network_hash_lookup = {}
forbidden_network_aliases = {}
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
module_types = [
    network_lora.ModuleTypeLora(),
    network_hada.ModuleTypeHada(),
    network_ia3.ModuleTypeIa3(),
    network_oft.ModuleTypeOFT(),
    network_lokr.ModuleTypeLokr(),
    network_full.ModuleTypeFull(),
    network_norm.ModuleTypeNorm(),
    network_glora.ModuleTypeGLora(),
]
convert_diffusers_name_to_compvis = lora_convert.convert_diffusers_name_to_compvis # supermerger compatibility item


def assign_network_names_to_compvis_modules(sd_model):
    network_layer_mapping = {}
    if shared.backend == shared.Backend.DIFFUSERS:
        if not hasattr(shared.sd_model, 'text_encoder') or not hasattr(shared.sd_model, 'unet'):
            return
        for name, module in shared.sd_model.text_encoder.named_modules():
            prefix = "lora_te1_" if shared.sd_model_type == "sdxl" else "lora_te_"
            network_name = prefix + name.replace(".", "_")
            network_layer_mapping[network_name] = module
            module.network_layer_name = network_name
        if shared.sd_model_type == "sdxl":
            for name, module in shared.sd_model.text_encoder_2.named_modules():
                network_name = "lora_te2_" + name.replace(".", "_")
                network_layer_mapping[network_name] = module
                module.network_layer_name = network_name
        for name, module in shared.sd_model.unet.named_modules():
            network_name = "lora_unet_" + name.replace(".", "_")
            network_layer_mapping[network_name] = module
            module.network_layer_name = network_name
    else:
        if not hasattr(shared.sd_model, 'cond_stage_model'):
            return
        for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
            network_name = name.replace(".", "_")
            network_layer_mapping[network_name] = module
            module.network_layer_name = network_name
        for name, module in shared.sd_model.model.named_modules():
            network_name = name.replace(".", "_")
            network_layer_mapping[network_name] = module
            module.network_layer_name = network_name
    sd_model.network_layer_mapping = network_layer_mapping


def load_diffusers(name, network_on_disk, lora_scale=1.0) -> network.Network:
    t0 = time.time()
    cached = lora_cache.get(name, None)
    # if debug:
    shared.log.debug(f'LoRA load: name="{name}" file="{network_on_disk.filename}" type=diffusers {"cached" if cached else ""} fuse={shared.opts.lora_fuse_diffusers}')
    if cached is not None:
        return cached
    if shared.backend != shared.Backend.DIFFUSERS:
        return None
    shared.sd_model.load_lora_weights(network_on_disk.filename)
    if shared.opts.lora_fuse_diffusers:
        shared.sd_model.fuse_lora(lora_scale=lora_scale)
    net = network.Network(name, network_on_disk)
    net.mtime = os.path.getmtime(network_on_disk.filename)
    lora_cache[name] = net
    t1 = time.time()
    timer['load'] += t1 - t0
    return net


def load_network(name, network_on_disk) -> network.Network:
    t0 = time.time()
    cached = lora_cache.get(name, None)
    if debug:
        shared.log.debug(f'LoRA load: name="{name}" file="{network_on_disk.filename}" type=lora {"cached" if cached else ""}')
    if cached is not None:
        return cached
    net = network.Network(name, network_on_disk)
    net.mtime = os.path.getmtime(network_on_disk.filename)
    sd = sd_models.read_state_dict(network_on_disk.filename)
    assign_network_names_to_compvis_modules(shared.sd_model) # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
    keys_failed_to_match = {}
    matched_networks = {}
    convert = lora_convert.KeyConvert()
    for key_network, weight in sd.items():
        parts = key_network.split('.')
        if len(parts) > 5: # messy handler for diffusers peft lora
            key_network_without_network_parts = '_'.join(parts[:-2])
            if not key_network_without_network_parts.startswith('lora_'):
                key_network_without_network_parts = 'lora_' + key_network_without_network_parts
            network_part = '.'.join(parts[-2:]).replace('lora_A', 'lora_down').replace('lora_B', 'lora_up')
        else:
            key_network_without_network_parts, network_part = key_network.split(".", 1)
        # if debug:
        #     shared.log.debug(f'LoRA load: name="{name}" full={key_network} network={network_part} key={key_network_without_network_parts}')
        key, sd_module = convert(key_network_without_network_parts)  # Now returns lists
        if sd_module[0] is None:
            keys_failed_to_match[key_network] = key
            continue
        for k, module in zip(key, sd_module):
            if k not in matched_networks:
                matched_networks[k] = network.NetworkWeights(network_key=key_network, sd_key=k, w={}, sd_module=module)
            matched_networks[k].w[network_part] = weight
    for key, weights in matched_networks.items():
        net_module = None
        for nettype in module_types:
            net_module = nettype.create_module(net, weights)
            if net_module is not None:
                break
        if net_module is None:
            shared.log.error(f'LoRA unhandled: name={name} key={key} weights={weights.w.keys()}')
        else:
            net.modules[key] = net_module
    if len(keys_failed_to_match) > 0:
        shared.log.warning(f"LoRA file={network_on_disk.filename} unmatched={len(keys_failed_to_match)} matched={len(matched_networks)}")
        if debug:
            shared.log.debug(f"LoRA file={network_on_disk.filename} unmatched={keys_failed_to_match}")
    elif debug:
        shared.log.debug(f"LoRA file={network_on_disk.filename} unmatched={len(keys_failed_to_match)} matched={len(matched_networks)}")
    lora_cache[name] = net
    t1 = time.time()
    timer['load'] += t1 - t0
    return net


def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
    networks_on_disk = [available_network_aliases.get(name, None) for name in names]
    if any(x is None for x in networks_on_disk):
        list_available_networks()
        networks_on_disk = [available_network_aliases.get(name, None) for name in names]
    failed_to_load_networks = []

    recompile_model = False
    if shared.compiled_model_state is not None and shared.compiled_model_state.is_compiled:
        if len(names) == len(shared.compiled_model_state.lora_model):
            for i, name in enumerate(names):
                if shared.compiled_model_state.lora_model[i] != f"{name}:{te_multipliers[i] if te_multipliers else 1.0}":
                    recompile_model = True
                    shared.compiled_model_state.lora_model = []
                    break
            if not recompile_model:
                if len(loaded_networks) > 0 and debug:
                    shared.log.debug('Model Compile: Skipping LoRa loading')
                return
        else:
            recompile_model = True
            shared.compiled_model_state.lora_model = []
    if recompile_model:
        backup_cuda_compile = shared.opts.cuda_compile
        backup_nncf_compress_weights = shared.opts.nncf_compress_weights
        sd_models.unload_model_weights(op='model')
        shared.opts.cuda_compile = False
        shared.opts.nncf_compress_weights = []
        sd_models.reload_model_weights(op='model')
        shared.opts.cuda_compile = backup_cuda_compile
        shared.opts.nncf_compress_weights = backup_nncf_compress_weights

    loaded_networks.clear()
    for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
        net = None
        if network_on_disk is not None:
            if debug:
                shared.log.debug(f'LoRA load start: name="{name}" file="{network_on_disk.filename}"')
            try:
                if recompile_model:
                    shared.compiled_model_state.lora_model.append(f"{name}:{te_multipliers[i] if te_multipliers else 1.0}")
                shorthash = getattr(network_on_disk, 'shorthash', '').lower()
                if shared.backend == shared.Backend.DIFFUSERS and (shared.opts.lora_force_diffusers # OpenVINO only works with Diffusers LoRa loading.
                        or shorthash == 'aaebf6360f7d' # sd15-lcm
                        or shorthash == '3d18b05e4f56' # sdxl-lcm
                        or shorthash == 'b71dcb732467' # sdxl-tcd
                        or shorthash == '813ea5fb1c67' # sdxl-turbo
                    ):
                    net = load_diffusers(name, network_on_disk, lora_scale=te_multipliers[i] if te_multipliers else 1.0)
                else:
                    net = load_network(name, network_on_disk)
            except Exception as e:
                shared.log.error(f"LoRA load failed: file={network_on_disk.filename} {e}")
                if debug:
                    errors.display(e, f"LoRA load failed file={network_on_disk.filename}")
                continue
            net.mentioned_name = name
            network_on_disk.read_hash()
        if net is None:
            failed_to_load_networks.append(name)
            shared.log.error(f"LoRA unknown type: network={name}")
            continue
        net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
        net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
        net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
        loaded_networks.append(net)

    while len(lora_cache) > shared.opts.lora_in_memory_limit:
        name = next(iter(lora_cache))
        lora_cache.pop(name, None)
    if len(loaded_networks) > 0 and debug:
        shared.log.debug(f'LoRA loaded={len(loaded_networks)} cache={list(lora_cache)}')
    devices.torch_gc()

    if recompile_model:
        shared.log.info("LoRA recompiling model")
        backup_lora_model = shared.compiled_model_state.lora_model
        if shared.opts.nncf_compress_weights and not (shared.opts.cuda_compile and shared.opts.cuda_compile_backend == "openvino_fx"):
            shared.sd_model = sd_models_compile.nncf_compress_weights(shared.sd_model)
        if shared.opts.cuda_compile:
            shared.sd_model = sd_models_compile.compile_diffusers(shared.sd_model)

        shared.compiled_model_state.lora_model = backup_lora_model


def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention, diffusers.models.lora.LoRACompatibleLinear, diffusers.models.lora.LoRACompatibleConv]):
    t0 = time.time()
    weights_backup = getattr(self, "network_weights_backup", None)
    bias_backup = getattr(self, "network_bias_backup", None)
    if weights_backup is None and bias_backup is None:
        return
    # if debug:
    #     shared.log.debug('LoRA restore weights')
    if weights_backup is not None:
        if isinstance(self, torch.nn.MultiheadAttention):
            self.in_proj_weight.copy_(weights_backup[0])
            self.out_proj.weight.copy_(weights_backup[1])
        else:
            self.weight.copy_(weights_backup)
    if bias_backup is not None:
        if isinstance(self, torch.nn.MultiheadAttention):
            self.out_proj.bias.copy_(bias_backup)
        else:
            self.bias.copy_(bias_backup)
    else:
        if isinstance(self, torch.nn.MultiheadAttention):
            self.out_proj.bias = None
        else:
            self.bias = None
    t1 = time.time()
    timer['restore'] += t1 - t0


def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention, diffusers.models.lora.LoRACompatibleLinear, diffusers.models.lora.LoRACompatibleConv]):
    """

    Applies the currently selected set of networks to the weights of torch layer self.

    If weights already have this particular set of networks applied, does nothing.

    If not, restores orginal weights from backup and alters weights according to networks.

    """
    network_layer_name = getattr(self, 'network_layer_name', None)
    if network_layer_name is None:
        return
    t0 = time.time()
    current_names = getattr(self, "network_current_names", ())
    wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
    weights_backup = getattr(self, "network_weights_backup", None)
    if weights_backup is None and wanted_names != (): # pylint: disable=C1803
        if current_names != ():
            raise RuntimeError("no backup weights found and current weights are not unchanged")
        if isinstance(self, torch.nn.MultiheadAttention):
            weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
        else:
            weights_backup = self.weight.to(devices.cpu, copy=True)
        self.network_weights_backup = weights_backup
    bias_backup = getattr(self, "network_bias_backup", None)
    if bias_backup is None:
        if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
            bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
        elif getattr(self, 'bias', None) is not None:
            bias_backup = self.bias.to(devices.cpu, copy=True)
        else:
            bias_backup = None
        self.network_bias_backup = bias_backup

    if current_names != wanted_names:
        network_restore_weights_from_backup(self)
        for net in loaded_networks:
            # default workflow where module is known and has weights
            module = net.modules.get(network_layer_name, None)
            if module is not None and hasattr(self, 'weight'):
                try:
                    with devices.inference_context():
                        updown, ex_bias = module.calc_updown(self.weight)
                        if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
                            # inpainting model. zero pad updown to make channel[1]  4 to 9
                            updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) # pylint: disable=not-callable
                        self.weight = torch.nn.Parameter(self.weight + updown)
                        if ex_bias is not None and hasattr(self, 'bias'):
                            if self.bias is None:
                                self.bias = torch.nn.Parameter(ex_bias)
                            else:
                                self.bias += ex_bias
                except RuntimeError as e:
                    extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
                    if debug:
                        module_name = net.modules.get(network_layer_name, None)
                        shared.log.error(f"LoRA apply weight name={net.name} module={module_name} layer={network_layer_name} {e}")
                        errors.display(e, 'LoRA apply weight')
                        raise RuntimeError('LoRA apply weight') from e
                continue
            # alternative workflow looking at _*_proj layers
            module_q = net.modules.get(network_layer_name + "_q_proj", None)
            module_k = net.modules.get(network_layer_name + "_k_proj", None)
            module_v = net.modules.get(network_layer_name + "_v_proj", None)
            module_out = net.modules.get(network_layer_name + "_out_proj", None)
            if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
                try:
                    with devices.inference_context():
                        updown_q, _ = module_q.calc_updown(self.in_proj_weight)
                        updown_k, _ = module_k.calc_updown(self.in_proj_weight)
                        updown_v, _ = module_v.calc_updown(self.in_proj_weight)
                        updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
                        updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
                        self.in_proj_weight += updown_qkv
                        self.out_proj.weight += updown_out
                    if ex_bias is not None:
                        if self.out_proj.bias is None:
                            self.out_proj.bias = torch.nn.Parameter(ex_bias)
                        else:
                            self.out_proj.bias += ex_bias
                except RuntimeError as e:
                    if debug:
                        shared.log.debug(f"LoRA network={net.name} layer={network_layer_name} {e}")
                    extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
                continue
            if module is None:
                continue
            shared.log.warning(f"LoRA network={net.name} layer={network_layer_name} unsupported operation")
            extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
        self.network_current_names = wanted_names
    t1 = time.time()
    timer['apply'] += t1 - t0


def network_forward(module, input, original_forward): # pylint: disable=W0622
    """

    Old way of applying Lora by executing operations during layer's forward.

    Stacking many loras this way results in big performance degradation.

    """
    if len(loaded_networks) == 0:
        return original_forward(module, input)
    input = devices.cond_cast_unet(input)
    network_restore_weights_from_backup(module)
    network_reset_cached_weight(module)
    y = original_forward(module, input)
    network_layer_name = getattr(module, 'network_layer_name', None)
    for lora in loaded_networks:
        module = lora.modules.get(network_layer_name, None)
        if module is None:
            continue
        y = module.forward(input, y)
    return y


def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
    self.network_current_names = ()
    self.network_weights_backup = None


def network_Linear_forward(self, input): # pylint: disable=W0622
    if shared.opts.lora_functional:
        return network_forward(self, input, originals.Linear_forward)
    network_apply_weights(self)
    return originals.Linear_forward(self, input)


def network_Linear_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)
    return originals.Linear_load_state_dict(self, *args, **kwargs)


def network_Conv2d_forward(self, input): # pylint: disable=W0622
    if shared.opts.lora_functional:
        return network_forward(self, input, originals.Conv2d_forward)
    network_apply_weights(self)
    return originals.Conv2d_forward(self, input)


def network_Conv2d_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)
    return originals.Conv2d_load_state_dict(self, *args, **kwargs)


def network_GroupNorm_forward(self, input): # pylint: disable=W0622
    if shared.opts.lora_functional:
        return network_forward(self, input, originals.GroupNorm_forward)
    network_apply_weights(self)
    return originals.GroupNorm_forward(self, input)


def network_GroupNorm_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)
    return originals.GroupNorm_load_state_dict(self, *args, **kwargs)


def network_LayerNorm_forward(self, input): # pylint: disable=W0622
    if shared.opts.lora_functional:
        return network_forward(self, input, originals.LayerNorm_forward)
    network_apply_weights(self)
    return originals.LayerNorm_forward(self, input)


def network_LayerNorm_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)
    return originals.LayerNorm_load_state_dict(self, *args, **kwargs)


def network_MultiheadAttention_forward(self, *args, **kwargs):
    network_apply_weights(self)
    return originals.MultiheadAttention_forward(self, *args, **kwargs)


def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)
    return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)


def list_available_networks():
    available_networks.clear()
    available_network_aliases.clear()
    forbidden_network_aliases.clear()
    available_network_hash_lookup.clear()
    forbidden_network_aliases.update({"none": 1, "Addams": 1})
    directories = []
    if os.path.exists(shared.cmd_opts.lora_dir):
        directories.append(shared.cmd_opts.lora_dir)
    else:
        shared.log.warning(f'LoRA directory not found: path="{shared.cmd_opts.lora_dir}"')
    if os.path.exists(shared.cmd_opts.lyco_dir) and shared.cmd_opts.lyco_dir != shared.cmd_opts.lora_dir:
        directories.append(shared.cmd_opts.lyco_dir)

    def add_network(filename):
        if not os.path.isfile(filename):
            return
        name = os.path.splitext(os.path.basename(filename))[0]
        try:
            entry = network.NetworkOnDisk(name, filename)
            available_networks[entry.name] = entry
            if entry.alias in available_network_aliases:
                forbidden_network_aliases[entry.alias.lower()] = 1
            if shared.opts.lora_preferred_name == 'filename':
                available_network_aliases[entry.name] = entry
            else:
                available_network_aliases[entry.alias] = entry
            if entry.shorthash:
                available_network_hash_lookup[entry.shorthash] = entry
        except OSError as e:  # should catch FileNotFoundError and PermissionError etc.
            shared.log.error(f"Failed to load network {name} from {filename} {e}")

    candidates = list(files_cache.list_files(*directories, ext_filter=[".pt", ".ckpt", ".safetensors"]))
    with concurrent.futures.ThreadPoolExecutor(max_workers=shared.max_workers) as executor:
        for fn in candidates:
            executor.submit(add_network, fn)
    shared.log.info(f'LoRA networks: available={len(available_networks)} folders={len(forbidden_network_aliases)}')


def infotext_pasted(infotext, params): # pylint: disable=W0613
    if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
        return  # if the other extension is active, it will handle those fields, no need to do anything
    added = []
    for k in params:
        if not k.startswith("AddNet Model "):
            continue
        num = k[13:]
        if params.get("AddNet Module " + num) != "LoRA":
            continue
        name = params.get("AddNet Model " + num)
        if name is None:
            continue
        m = re_network_name.match(name)
        if m:
            name = m.group(1)
        multiplier = params.get("AddNet Weight A " + num, "1.0")
        added.append(f"<lora:{name}:{multiplier}>")
    if added:
        params["Prompt"] += "\n" + "".join(added)


list_available_networks()