from typing import Union, List import os import re import time import concurrent import lora_patches import network import network_lora import network_hada import network_ia3 import network_oft import network_lokr import network_full import network_norm import network_glora import lora_convert import torch import diffusers.models.lora from modules import shared, devices, sd_models, sd_models_compile, errors, scripts, files_cache debug = os.environ.get('SD_LORA_DEBUG', None) is not None originals: lora_patches.LoraPatches = None extra_network_lora = None available_networks = {} available_network_aliases = {} loaded_networks: List[network.Network] = [] timer = { 'load': 0, 'apply': 0, 'restore': 0 } # networks_in_memory = {} lora_cache = {} available_network_hash_lookup = {} forbidden_network_aliases = {} re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)") module_types = [ network_lora.ModuleTypeLora(), network_hada.ModuleTypeHada(), network_ia3.ModuleTypeIa3(), network_oft.ModuleTypeOFT(), network_lokr.ModuleTypeLokr(), network_full.ModuleTypeFull(), network_norm.ModuleTypeNorm(), network_glora.ModuleTypeGLora(), ] convert_diffusers_name_to_compvis = lora_convert.convert_diffusers_name_to_compvis # supermerger compatibility item def assign_network_names_to_compvis_modules(sd_model): network_layer_mapping = {} if shared.backend == shared.Backend.DIFFUSERS: if not hasattr(shared.sd_model, 'text_encoder') or not hasattr(shared.sd_model, 'unet'): return for name, module in shared.sd_model.text_encoder.named_modules(): prefix = "lora_te1_" if shared.sd_model_type == "sdxl" else "lora_te_" network_name = prefix + name.replace(".", "_") network_layer_mapping[network_name] = module module.network_layer_name = network_name if shared.sd_model_type == "sdxl": for name, module in shared.sd_model.text_encoder_2.named_modules(): network_name = "lora_te2_" + name.replace(".", "_") network_layer_mapping[network_name] = module module.network_layer_name = network_name for name, module in shared.sd_model.unet.named_modules(): network_name = "lora_unet_" + name.replace(".", "_") network_layer_mapping[network_name] = module module.network_layer_name = network_name else: if not hasattr(shared.sd_model, 'cond_stage_model'): return for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): network_name = name.replace(".", "_") network_layer_mapping[network_name] = module module.network_layer_name = network_name for name, module in shared.sd_model.model.named_modules(): network_name = name.replace(".", "_") network_layer_mapping[network_name] = module module.network_layer_name = network_name sd_model.network_layer_mapping = network_layer_mapping def load_diffusers(name, network_on_disk, lora_scale=1.0) -> network.Network: t0 = time.time() cached = lora_cache.get(name, None) # if debug: shared.log.debug(f'LoRA load: name="{name}" file="{network_on_disk.filename}" type=diffusers {"cached" if cached else ""} fuse={shared.opts.lora_fuse_diffusers}') if cached is not None: return cached if shared.backend != shared.Backend.DIFFUSERS: return None shared.sd_model.load_lora_weights(network_on_disk.filename) if shared.opts.lora_fuse_diffusers: shared.sd_model.fuse_lora(lora_scale=lora_scale) net = network.Network(name, network_on_disk) net.mtime = os.path.getmtime(network_on_disk.filename) lora_cache[name] = net t1 = time.time() timer['load'] += t1 - t0 return net def load_network(name, network_on_disk) -> network.Network: t0 = time.time() cached = lora_cache.get(name, None) if debug: shared.log.debug(f'LoRA load: name="{name}" file="{network_on_disk.filename}" type=lora {"cached" if cached else ""}') if cached is not None: return cached net = network.Network(name, network_on_disk) net.mtime = os.path.getmtime(network_on_disk.filename) sd = sd_models.read_state_dict(network_on_disk.filename) assign_network_names_to_compvis_modules(shared.sd_model) # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0 keys_failed_to_match = {} matched_networks = {} convert = lora_convert.KeyConvert() for key_network, weight in sd.items(): parts = key_network.split('.') if len(parts) > 5: # messy handler for diffusers peft lora key_network_without_network_parts = '_'.join(parts[:-2]) if not key_network_without_network_parts.startswith('lora_'): key_network_without_network_parts = 'lora_' + key_network_without_network_parts network_part = '.'.join(parts[-2:]).replace('lora_A', 'lora_down').replace('lora_B', 'lora_up') else: key_network_without_network_parts, network_part = key_network.split(".", 1) # if debug: # shared.log.debug(f'LoRA load: name="{name}" full={key_network} network={network_part} key={key_network_without_network_parts}') key, sd_module = convert(key_network_without_network_parts) # Now returns lists if sd_module[0] is None: keys_failed_to_match[key_network] = key continue for k, module in zip(key, sd_module): if k not in matched_networks: matched_networks[k] = network.NetworkWeights(network_key=key_network, sd_key=k, w={}, sd_module=module) matched_networks[k].w[network_part] = weight for key, weights in matched_networks.items(): net_module = None for nettype in module_types: net_module = nettype.create_module(net, weights) if net_module is not None: break if net_module is None: shared.log.error(f'LoRA unhandled: name={name} key={key} weights={weights.w.keys()}') else: net.modules[key] = net_module if len(keys_failed_to_match) > 0: shared.log.warning(f"LoRA file={network_on_disk.filename} unmatched={len(keys_failed_to_match)} matched={len(matched_networks)}") if debug: shared.log.debug(f"LoRA file={network_on_disk.filename} unmatched={keys_failed_to_match}") elif debug: shared.log.debug(f"LoRA file={network_on_disk.filename} unmatched={len(keys_failed_to_match)} matched={len(matched_networks)}") lora_cache[name] = net t1 = time.time() timer['load'] += t1 - t0 return net def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None): networks_on_disk = [available_network_aliases.get(name, None) for name in names] if any(x is None for x in networks_on_disk): list_available_networks() networks_on_disk = [available_network_aliases.get(name, None) for name in names] failed_to_load_networks = [] recompile_model = False if shared.compiled_model_state is not None and shared.compiled_model_state.is_compiled: if len(names) == len(shared.compiled_model_state.lora_model): for i, name in enumerate(names): if shared.compiled_model_state.lora_model[i] != f"{name}:{te_multipliers[i] if te_multipliers else 1.0}": recompile_model = True shared.compiled_model_state.lora_model = [] break if not recompile_model: if len(loaded_networks) > 0 and debug: shared.log.debug('Model Compile: Skipping LoRa loading') return else: recompile_model = True shared.compiled_model_state.lora_model = [] if recompile_model: backup_cuda_compile = shared.opts.cuda_compile backup_nncf_compress_weights = shared.opts.nncf_compress_weights sd_models.unload_model_weights(op='model') shared.opts.cuda_compile = False shared.opts.nncf_compress_weights = [] sd_models.reload_model_weights(op='model') shared.opts.cuda_compile = backup_cuda_compile shared.opts.nncf_compress_weights = backup_nncf_compress_weights loaded_networks.clear() for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)): net = None if network_on_disk is not None: if debug: shared.log.debug(f'LoRA load start: name="{name}" file="{network_on_disk.filename}"') try: if recompile_model: shared.compiled_model_state.lora_model.append(f"{name}:{te_multipliers[i] if te_multipliers else 1.0}") shorthash = getattr(network_on_disk, 'shorthash', '').lower() if shared.backend == shared.Backend.DIFFUSERS and (shared.opts.lora_force_diffusers # OpenVINO only works with Diffusers LoRa loading. or shorthash == 'aaebf6360f7d' # sd15-lcm or shorthash == '3d18b05e4f56' # sdxl-lcm or shorthash == 'b71dcb732467' # sdxl-tcd or shorthash == '813ea5fb1c67' # sdxl-turbo ): net = load_diffusers(name, network_on_disk, lora_scale=te_multipliers[i] if te_multipliers else 1.0) else: net = load_network(name, network_on_disk) except Exception as e: shared.log.error(f"LoRA load failed: file={network_on_disk.filename} {e}") if debug: errors.display(e, f"LoRA load failed file={network_on_disk.filename}") continue net.mentioned_name = name network_on_disk.read_hash() if net is None: failed_to_load_networks.append(name) shared.log.error(f"LoRA unknown type: network={name}") continue net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0 net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0 net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0 loaded_networks.append(net) while len(lora_cache) > shared.opts.lora_in_memory_limit: name = next(iter(lora_cache)) lora_cache.pop(name, None) if len(loaded_networks) > 0 and debug: shared.log.debug(f'LoRA loaded={len(loaded_networks)} cache={list(lora_cache)}') devices.torch_gc() if recompile_model: shared.log.info("LoRA recompiling model") backup_lora_model = shared.compiled_model_state.lora_model if shared.opts.nncf_compress_weights and not (shared.opts.cuda_compile and shared.opts.cuda_compile_backend == "openvino_fx"): shared.sd_model = sd_models_compile.nncf_compress_weights(shared.sd_model) if shared.opts.cuda_compile: shared.sd_model = sd_models_compile.compile_diffusers(shared.sd_model) shared.compiled_model_state.lora_model = backup_lora_model def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention, diffusers.models.lora.LoRACompatibleLinear, diffusers.models.lora.LoRACompatibleConv]): t0 = time.time() weights_backup = getattr(self, "network_weights_backup", None) bias_backup = getattr(self, "network_bias_backup", None) if weights_backup is None and bias_backup is None: return # if debug: # shared.log.debug('LoRA restore weights') if weights_backup is not None: if isinstance(self, torch.nn.MultiheadAttention): self.in_proj_weight.copy_(weights_backup[0]) self.out_proj.weight.copy_(weights_backup[1]) else: self.weight.copy_(weights_backup) if bias_backup is not None: if isinstance(self, torch.nn.MultiheadAttention): self.out_proj.bias.copy_(bias_backup) else: self.bias.copy_(bias_backup) else: if isinstance(self, torch.nn.MultiheadAttention): self.out_proj.bias = None else: self.bias = None t1 = time.time() timer['restore'] += t1 - t0 def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention, diffusers.models.lora.LoRACompatibleLinear, diffusers.models.lora.LoRACompatibleConv]): """ Applies the currently selected set of networks to the weights of torch layer self. If weights already have this particular set of networks applied, does nothing. If not, restores orginal weights from backup and alters weights according to networks. """ network_layer_name = getattr(self, 'network_layer_name', None) if network_layer_name is None: return t0 = time.time() current_names = getattr(self, "network_current_names", ()) wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks) weights_backup = getattr(self, "network_weights_backup", None) if weights_backup is None and wanted_names != (): # pylint: disable=C1803 if current_names != (): raise RuntimeError("no backup weights found and current weights are not unchanged") if isinstance(self, torch.nn.MultiheadAttention): weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True)) else: weights_backup = self.weight.to(devices.cpu, copy=True) self.network_weights_backup = weights_backup bias_backup = getattr(self, "network_bias_backup", None) if bias_backup is None: if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None: bias_backup = self.out_proj.bias.to(devices.cpu, copy=True) elif getattr(self, 'bias', None) is not None: bias_backup = self.bias.to(devices.cpu, copy=True) else: bias_backup = None self.network_bias_backup = bias_backup if current_names != wanted_names: network_restore_weights_from_backup(self) for net in loaded_networks: # default workflow where module is known and has weights module = net.modules.get(network_layer_name, None) if module is not None and hasattr(self, 'weight'): try: with devices.inference_context(): updown, ex_bias = module.calc_updown(self.weight) if len(self.weight.shape) == 4 and self.weight.shape[1] == 9: # inpainting model. zero pad updown to make channel[1] 4 to 9 updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) # pylint: disable=not-callable self.weight = torch.nn.Parameter(self.weight + updown) if ex_bias is not None and hasattr(self, 'bias'): if self.bias is None: self.bias = torch.nn.Parameter(ex_bias) else: self.bias += ex_bias except RuntimeError as e: extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 if debug: module_name = net.modules.get(network_layer_name, None) shared.log.error(f"LoRA apply weight name={net.name} module={module_name} layer={network_layer_name} {e}") errors.display(e, 'LoRA apply weight') raise RuntimeError('LoRA apply weight') from e continue # alternative workflow looking at _*_proj layers module_q = net.modules.get(network_layer_name + "_q_proj", None) module_k = net.modules.get(network_layer_name + "_k_proj", None) module_v = net.modules.get(network_layer_name + "_v_proj", None) module_out = net.modules.get(network_layer_name + "_out_proj", None) if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out: try: with devices.inference_context(): updown_q, _ = module_q.calc_updown(self.in_proj_weight) updown_k, _ = module_k.calc_updown(self.in_proj_weight) updown_v, _ = module_v.calc_updown(self.in_proj_weight) updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight) self.in_proj_weight += updown_qkv self.out_proj.weight += updown_out if ex_bias is not None: if self.out_proj.bias is None: self.out_proj.bias = torch.nn.Parameter(ex_bias) else: self.out_proj.bias += ex_bias except RuntimeError as e: if debug: shared.log.debug(f"LoRA network={net.name} layer={network_layer_name} {e}") extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 continue if module is None: continue shared.log.warning(f"LoRA network={net.name} layer={network_layer_name} unsupported operation") extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 self.network_current_names = wanted_names t1 = time.time() timer['apply'] += t1 - t0 def network_forward(module, input, original_forward): # pylint: disable=W0622 """ Old way of applying Lora by executing operations during layer's forward. Stacking many loras this way results in big performance degradation. """ if len(loaded_networks) == 0: return original_forward(module, input) input = devices.cond_cast_unet(input) network_restore_weights_from_backup(module) network_reset_cached_weight(module) y = original_forward(module, input) network_layer_name = getattr(module, 'network_layer_name', None) for lora in loaded_networks: module = lora.modules.get(network_layer_name, None) if module is None: continue y = module.forward(input, y) return y def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): self.network_current_names = () self.network_weights_backup = None def network_Linear_forward(self, input): # pylint: disable=W0622 if shared.opts.lora_functional: return network_forward(self, input, originals.Linear_forward) network_apply_weights(self) return originals.Linear_forward(self, input) def network_Linear_load_state_dict(self, *args, **kwargs): network_reset_cached_weight(self) return originals.Linear_load_state_dict(self, *args, **kwargs) def network_Conv2d_forward(self, input): # pylint: disable=W0622 if shared.opts.lora_functional: return network_forward(self, input, originals.Conv2d_forward) network_apply_weights(self) return originals.Conv2d_forward(self, input) def network_Conv2d_load_state_dict(self, *args, **kwargs): network_reset_cached_weight(self) return originals.Conv2d_load_state_dict(self, *args, **kwargs) def network_GroupNorm_forward(self, input): # pylint: disable=W0622 if shared.opts.lora_functional: return network_forward(self, input, originals.GroupNorm_forward) network_apply_weights(self) return originals.GroupNorm_forward(self, input) def network_GroupNorm_load_state_dict(self, *args, **kwargs): network_reset_cached_weight(self) return originals.GroupNorm_load_state_dict(self, *args, **kwargs) def network_LayerNorm_forward(self, input): # pylint: disable=W0622 if shared.opts.lora_functional: return network_forward(self, input, originals.LayerNorm_forward) network_apply_weights(self) return originals.LayerNorm_forward(self, input) def network_LayerNorm_load_state_dict(self, *args, **kwargs): network_reset_cached_weight(self) return originals.LayerNorm_load_state_dict(self, *args, **kwargs) def network_MultiheadAttention_forward(self, *args, **kwargs): network_apply_weights(self) return originals.MultiheadAttention_forward(self, *args, **kwargs) def network_MultiheadAttention_load_state_dict(self, *args, **kwargs): network_reset_cached_weight(self) return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs) def list_available_networks(): available_networks.clear() available_network_aliases.clear() forbidden_network_aliases.clear() available_network_hash_lookup.clear() forbidden_network_aliases.update({"none": 1, "Addams": 1}) directories = [] if os.path.exists(shared.cmd_opts.lora_dir): directories.append(shared.cmd_opts.lora_dir) else: shared.log.warning(f'LoRA directory not found: path="{shared.cmd_opts.lora_dir}"') if os.path.exists(shared.cmd_opts.lyco_dir) and shared.cmd_opts.lyco_dir != shared.cmd_opts.lora_dir: directories.append(shared.cmd_opts.lyco_dir) def add_network(filename): if not os.path.isfile(filename): return name = os.path.splitext(os.path.basename(filename))[0] try: entry = network.NetworkOnDisk(name, filename) available_networks[entry.name] = entry if entry.alias in available_network_aliases: forbidden_network_aliases[entry.alias.lower()] = 1 if shared.opts.lora_preferred_name == 'filename': available_network_aliases[entry.name] = entry else: available_network_aliases[entry.alias] = entry if entry.shorthash: available_network_hash_lookup[entry.shorthash] = entry except OSError as e: # should catch FileNotFoundError and PermissionError etc. shared.log.error(f"Failed to load network {name} from {filename} {e}") candidates = list(files_cache.list_files(*directories, ext_filter=[".pt", ".ckpt", ".safetensors"])) with concurrent.futures.ThreadPoolExecutor(max_workers=shared.max_workers) as executor: for fn in candidates: executor.submit(add_network, fn) shared.log.info(f'LoRA networks: available={len(available_networks)} folders={len(forbidden_network_aliases)}') def infotext_pasted(infotext, params): # pylint: disable=W0613 if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]: return # if the other extension is active, it will handle those fields, no need to do anything added = [] for k in params: if not k.startswith("AddNet Model "): continue num = k[13:] if params.get("AddNet Module " + num) != "LoRA": continue name = params.get("AddNet Model " + num) if name is None: continue m = re_network_name.match(name) if m: name = m.group(1) multiplier = params.get("AddNet Weight A " + num, "1.0") added.append(f"") if added: params["Prompt"] += "\n" + "".join(added) list_available_networks()