File size: 6,455 Bytes
7c40d04 e1933c4 1ece3c6 7c40d04 b0c5829 e1933c4 e4872e8 b0c5829 6991b14 7c40d04 b0c5829 7c40d04 b0c5829 e1933c4 6991b14 57d09d7 7c40d04 6581e65 e1933c4 7c40d04 6991b14 e1933c4 7c40d04 6991b14 e1933c4 7c40d04 b0c5829 e1933c4 7c40d04 e1933c4 7c40d04 e1933c4 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 b0c5829 7c40d04 cbdf3eb 7c40d04 cbdf3eb 7c40d04 cbdf3eb 6991b14 e1933c4 7c40d04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os, io
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from huggingface_hub import InferenceClient
from PyPDF2 import PdfReader
from docx import Document
from PIL import Image
from io import BytesIO
# -----------------------------------------------------------------------------
# CONFIGURATION
# -----------------------------------------------------------------------------
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN") # injected as a secret in HF Spaces
PORT = int(os.getenv("PORT", 7860)) # default for local, HF Spaces overrides
app = FastAPI(
title="AI‑Powered Web‑App API",
description="Backend endpoints for summarisation, captioning and QA",
version="1.2.0",
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Serve optional static assets **only if the folder exists**
from pathlib import Path
static_dir = Path("static")
if static_dir.exists():
app.mount("/static", StaticFiles(directory="static"), name="static"), name="static")
# -----------------------------------------------------------------------------
# MODEL CLIENTS (remote Hugging Face Inference API)
# -----------------------------------------------------------------------------
summary_client = InferenceClient("facebook/bart-large-cnn", token=HUGGINGFACE_TOKEN)
qa_client = InferenceClient("deepset/roberta-base-squad2", token=HUGGINGFACE_TOKEN)
image_caption_client = InferenceClient("nlpconnect/vit-gpt2-image-captioning", token=HUGGINGFACE_TOKEN)
# -----------------------------------------------------------------------------
# UTILITY FUNCTIONS
# -----------------------------------------------------------------------------
def extract_text_from_pdf(content: bytes) -> str:
reader = PdfReader(io.BytesIO(content))
return "\n".join(page.extract_text() or "" for page in reader.pages).strip()
def extract_text_from_docx(content: bytes) -> str:
doc = Document(io.BytesIO(content))
return "\n".join(p.text for p in doc.paragraphs).strip()
def process_uploaded_file(file: UploadFile) -> str:
content = file.file.read()
extension = file.filename.split(".")[-1].lower()
if extension == "pdf":
return extract_text_from_pdf(content)
if extension == "docx":
return extract_text_from_docx(content)
if extension == "txt":
return content.decode("utf-8").strip()
raise ValueError("Unsupported file type")
# -----------------------------------------------------------------------------
# ROUTES
# -----------------------------------------------------------------------------
@app.get("/", response_class=HTMLResponse)
async def serve_index():
"""Serve the frontend HTML file."""
return FileResponse("index.html")
# ---------- Summarisation -----------------------------------------------------
@app.post("/api/summarize")
async def summarize_document(file: UploadFile = File(...)):
try:
text = process_uploaded_file(file)
if len(text) < 20:
return {"result": "Document too short to summarise."}
summary_raw = summary_client.summarization(text[:3000])
# Normalise to plain string
if isinstance(summary_raw, list):
summary_txt = summary_raw[0].get("summary_text", str(summary_raw))
elif isinstance(summary_raw, dict):
summary_txt = summary_raw.get("summary_text", str(summary_raw))
else:
summary_txt = str(summary_raw)
return {"result": summary_txt}
except Exception as exc:
return JSONResponse(status_code=500, content={"error": f"Summarisation failure: {exc}"})
# ---------- Image Caption -----------------------------------------------------
@app.post("/api/caption")
async def caption_image(file: UploadFile = File(...)):
try:
image_bytes = await file.read()
image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB")
image_pil.thumbnail((1024, 1024))
buf = BytesIO(); image_pil.save(buf, format="JPEG"); img = buf.getvalue()
result = image_caption_client.image_to_text(img)
if isinstance(result, dict):
caption = result.get("generated_text") or result.get("caption") or "No caption found."
elif isinstance(result, list):
caption = result[0].get("generated_text", "No caption found.")
else:
caption = str(result)
return {"result": caption}
except Exception as exc:
return JSONResponse(status_code=500, content={"error": f"Caption failure: {exc}"})
# ---------- Question Answering ----------------------------------------------
@app.post("/api/qa")
async def question_answering(file: UploadFile = File(...), question: str = Form(...)):
try:
# If it's an image, first caption it to build context
if file.content_type.startswith("image/"):
image_bytes = await file.read()
pil = Image.open(io.BytesIO(image_bytes)).convert("RGB"); pil.thumbnail((1024, 1024))
b = BytesIO(); pil.save(b, format="JPEG"); img = b.getvalue()
res = image_caption_client.image_to_text(img)
context = res.get("generated_text") if isinstance(res, dict) else str(res)
else:
context = process_uploaded_file(file)[:3000]
if not context:
return {"result": "No context – cannot answer."}
answer = qa_client.question_answering(question=question, context=context)
return {"result": answer.get("answer", "No answer found.")}
except Exception as exc:
return JSONResponse(status_code=500, content={"error": f"QA failure: {exc}"})
# ---------- Health check ------------------------------------------------------
@app.get("/api/health")
async def health():
return {
"status": "healthy",
"hf_token_set": bool(HUGGINGFACE_TOKEN),
"version": app.version,
}
# -----------------------------------------------------------------------------
# ENTRYPOINT
# -----------------------------------------------------------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=PORT)
|