File size: 6,455 Bytes
7c40d04
e1933c4
1ece3c6
7c40d04
 
b0c5829
e1933c4
 
e4872e8
b0c5829
6991b14
7c40d04
 
 
 
 
b0c5829
7c40d04
 
 
 
 
b0c5829
e1933c4
 
 
 
 
 
 
6991b14
57d09d7
 
 
 
 
7c40d04
 
 
 
 
 
 
 
 
 
 
6581e65
e1933c4
 
7c40d04
6991b14
e1933c4
 
7c40d04
6991b14
e1933c4
7c40d04
 
b0c5829
e1933c4
7c40d04
e1933c4
7c40d04
e1933c4
7c40d04
 
 
 
 
b0c5829
 
7c40d04
 
 
b0c5829
7c40d04
 
 
 
b0c5829
 
 
7c40d04
 
 
 
 
 
 
 
 
 
b0c5829
7c40d04
 
 
b0c5829
7c40d04
b0c5829
7c40d04
 
b0c5829
7c40d04
 
 
 
b0c5829
7c40d04
 
 
 
 
b0c5829
7c40d04
b0c5829
7c40d04
 
 
b0c5829
7c40d04
b0c5829
7c40d04
 
b0c5829
7c40d04
 
 
 
 
 
 
 
 
b0c5829
7c40d04
 
b0c5829
7c40d04
 
 
 
b0c5829
7c40d04
cbdf3eb
7c40d04
 
 
 
 
 
 
cbdf3eb
7c40d04
 
 
cbdf3eb
6991b14
e1933c4
7c40d04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os, io
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from huggingface_hub import InferenceClient
from PyPDF2 import PdfReader
from docx import Document
from PIL import Image
from io import BytesIO

# -----------------------------------------------------------------------------
# CONFIGURATION
# -----------------------------------------------------------------------------
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")                # injected as a secret in HF Spaces
PORT               = int(os.getenv("PORT", 7860))        # default for local, HF Spaces overrides

app = FastAPI(
    title="AI‑Powered Web‑App API",
    description="Backend endpoints for summarisation, captioning and QA",
    version="1.2.0",
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Serve optional static assets **only if the folder exists**
from pathlib import Path
static_dir = Path("static")
if static_dir.exists():
    app.mount("/static", StaticFiles(directory="static"), name="static"), name="static")

# -----------------------------------------------------------------------------
# MODEL CLIENTS (remote Hugging Face Inference API)
# -----------------------------------------------------------------------------
summary_client       = InferenceClient("facebook/bart-large-cnn",              token=HUGGINGFACE_TOKEN)
qa_client            = InferenceClient("deepset/roberta-base-squad2",          token=HUGGINGFACE_TOKEN)
image_caption_client = InferenceClient("nlpconnect/vit-gpt2-image-captioning", token=HUGGINGFACE_TOKEN)

# -----------------------------------------------------------------------------
# UTILITY FUNCTIONS
# -----------------------------------------------------------------------------

def extract_text_from_pdf(content: bytes) -> str:
    reader = PdfReader(io.BytesIO(content))
    return "\n".join(page.extract_text() or "" for page in reader.pages).strip()

def extract_text_from_docx(content: bytes) -> str:
    doc = Document(io.BytesIO(content))
    return "\n".join(p.text for p in doc.paragraphs).strip()

def process_uploaded_file(file: UploadFile) -> str:
    content   = file.file.read()
    extension = file.filename.split(".")[-1].lower()
    if extension == "pdf":
        return extract_text_from_pdf(content)
    if extension == "docx":
        return extract_text_from_docx(content)
    if extension == "txt":
        return content.decode("utf-8").strip()
    raise ValueError("Unsupported file type")

# -----------------------------------------------------------------------------
# ROUTES
# -----------------------------------------------------------------------------

@app.get("/", response_class=HTMLResponse)
async def serve_index():
    """Serve the frontend HTML file."""
    return FileResponse("index.html")

# ---------- Summarisation -----------------------------------------------------

@app.post("/api/summarize")
async def summarize_document(file: UploadFile = File(...)):
    try:
        text = process_uploaded_file(file)
        if len(text) < 20:
            return {"result": "Document too short to summarise."}

        summary_raw = summary_client.summarization(text[:3000])
        # Normalise to plain string
        if isinstance(summary_raw, list):
            summary_txt = summary_raw[0].get("summary_text", str(summary_raw))
        elif isinstance(summary_raw, dict):
            summary_txt = summary_raw.get("summary_text", str(summary_raw))
        else:
            summary_txt = str(summary_raw)

        return {"result": summary_txt}
    except Exception as exc:
        return JSONResponse(status_code=500, content={"error": f"Summarisation failure: {exc}"})

# ---------- Image Caption -----------------------------------------------------

@app.post("/api/caption")
async def caption_image(file: UploadFile = File(...)):
    try:
        image_bytes = await file.read()
        image_pil   = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        image_pil.thumbnail((1024, 1024))
        buf = BytesIO(); image_pil.save(buf, format="JPEG"); img = buf.getvalue()

        result = image_caption_client.image_to_text(img)
        if isinstance(result, dict):
            caption = result.get("generated_text") or result.get("caption") or "No caption found."
        elif isinstance(result, list):
            caption = result[0].get("generated_text", "No caption found.")
        else:
            caption = str(result)

        return {"result": caption}
    except Exception as exc:
        return JSONResponse(status_code=500, content={"error": f"Caption failure: {exc}"})

# ---------- Question Answering ----------------------------------------------

@app.post("/api/qa")
async def question_answering(file: UploadFile = File(...), question: str = Form(...)):
    try:
        # If it's an image, first caption it to build context
        if file.content_type.startswith("image/"):
            image_bytes = await file.read()
            pil = Image.open(io.BytesIO(image_bytes)).convert("RGB"); pil.thumbnail((1024, 1024))
            b = BytesIO(); pil.save(b, format="JPEG"); img = b.getvalue()
            res = image_caption_client.image_to_text(img)
            context = res.get("generated_text") if isinstance(res, dict) else str(res)
        else:
            context = process_uploaded_file(file)[:3000]

        if not context:
            return {"result": "No context – cannot answer."}

        answer = qa_client.question_answering(question=question, context=context)
        return {"result": answer.get("answer", "No answer found.")}
    except Exception as exc:
        return JSONResponse(status_code=500, content={"error": f"QA failure: {exc}"})

# ---------- Health check ------------------------------------------------------

@app.get("/api/health")
async def health():
    return {
        "status": "healthy",
        "hf_token_set": bool(HUGGINGFACE_TOKEN),
        "version": app.version,
    }

# -----------------------------------------------------------------------------
# ENTRYPOINT
# -----------------------------------------------------------------------------

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=PORT)