Update main.py
Browse files
main.py
CHANGED
@@ -1,89 +1,120 @@
|
|
1 |
-
from fastapi import FastAPI, UploadFile, File, Form
|
2 |
-
from fastapi.responses import JSONResponse
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
-
import uvicorn
|
5 |
-
import tempfile
|
6 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from PIL import Image
|
8 |
-
import
|
|
|
|
|
|
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
"
|
15 |
-
|
16 |
-
"
|
17 |
-
|
18 |
-
|
19 |
-
models = {}
|
20 |
-
|
21 |
-
def load_model(name):
|
22 |
-
if name not in models:
|
23 |
-
if name == "qwen":
|
24 |
-
models[name] = AutoModelForCausalLM.from_pretrained(
|
25 |
-
"Qwen/Qwen2.5-VL-7B-Instruct",
|
26 |
-
device_map="auto",
|
27 |
-
trust_remote_code=True,
|
28 |
-
torch_dtype=torch.float16
|
29 |
-
)
|
30 |
-
elif name == "deepseek":
|
31 |
-
models[name] = AutoModelForCausalLM.from_pretrained(
|
32 |
-
"deepseek-ai/DeepSeek-V2-Chat",
|
33 |
-
device_map="auto",
|
34 |
-
trust_remote_code=True,
|
35 |
-
torch_dtype=torch.float16
|
36 |
-
)
|
37 |
-
elif name == "llama":
|
38 |
-
models[name] = AutoModelForCausalLM.from_pretrained(
|
39 |
-
"meta-llama/Llama-2-70b-chat-hf",
|
40 |
-
device_map="auto",
|
41 |
-
trust_remote_code=True,
|
42 |
-
torch_dtype=torch.float16
|
43 |
-
)
|
44 |
-
return models[name]
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
text = f.read()
|
57 |
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
@app.post("/api/caption")
|
65 |
-
async def
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
@app.post("/api/qa")
|
73 |
-
async def
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
model = load_model("deepseek")
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
85 |
|
86 |
-
|
|
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
-
uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import io
|
3 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
from fastapi.responses import JSONResponse, HTMLResponse
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
+
from PyPDF2 import PdfReader
|
8 |
+
from docx import Document
|
9 |
from PIL import Image
|
10 |
+
from io import BytesIO
|
11 |
+
|
12 |
+
# Load Hugging Face Token securely
|
13 |
+
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
17 |
+
app.add_middleware(
|
18 |
+
CORSMiddleware,
|
19 |
+
allow_origins=["*"],
|
20 |
+
allow_credentials=True,
|
21 |
+
allow_methods=["*"],
|
22 |
+
allow_headers=["*"],
|
23 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Initialize Hugging Face clients
|
26 |
+
summary_client = InferenceClient(model="facebook/bart-large-cnn", token=HUGGINGFACE_TOKEN)
|
27 |
+
qa_client = InferenceClient(model="deepset/roberta-base-squad2", token=HUGGINGFACE_TOKEN)
|
28 |
+
image_caption_client = InferenceClient(model="nlpconnect/vit-gpt2-image-captioning", token=HUGGINGFACE_TOKEN)
|
29 |
+
|
30 |
+
def extract_text_from_pdf(content: bytes) -> str:
|
31 |
+
reader = PdfReader(io.BytesIO(content))
|
32 |
+
return "\n".join(page.extract_text() or "" for page in reader.pages).strip()
|
33 |
|
34 |
+
def extract_text_from_docx(content: bytes) -> str:
|
35 |
+
doc = Document(io.BytesIO(content))
|
36 |
+
return "\n".join(para.text for para in doc.paragraphs).strip()
|
|
|
37 |
|
38 |
+
def process_uploaded_file(file: UploadFile) -> str:
|
39 |
+
content = file.file.read()
|
40 |
+
extension = file.filename.split('.')[-1].lower()
|
41 |
+
if extension == "pdf":
|
42 |
+
return extract_text_from_pdf(content)
|
43 |
+
elif extension == "docx":
|
44 |
+
return extract_text_from_docx(content)
|
45 |
+
elif extension == "txt":
|
46 |
+
return content.decode("utf-8").strip()
|
47 |
+
else:
|
48 |
+
raise ValueError("Unsupported file type.")
|
49 |
|
50 |
+
@app.get("/", response_class=HTMLResponse)
|
51 |
+
async def serve_homepage():
|
52 |
+
with open("index.html", "r", encoding="utf-8") as f:
|
53 |
+
return HTMLResponse(content=f.read(), status_code=200)
|
54 |
+
|
55 |
+
@app.post("/api/summarize")
|
56 |
+
async def summarize_document(file: UploadFile = File(...)):
|
57 |
+
try:
|
58 |
+
text = process_uploaded_file(file)
|
59 |
+
if len(text) < 20:
|
60 |
+
return {"result": "Document too short to summarize."}
|
61 |
+
summary = summary_client.summarization(text[:3000])
|
62 |
+
return {"result": summary}
|
63 |
+
except Exception as e:
|
64 |
+
return JSONResponse(status_code=500, content={"error": str(e)})
|
65 |
|
66 |
@app.post("/api/caption")
|
67 |
+
async def caption_image(file: UploadFile = File(...)):
|
68 |
+
try:
|
69 |
+
image_bytes = await file.read()
|
70 |
+
image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
71 |
+
image_pil.thumbnail((1024, 1024))
|
72 |
+
img_byte_arr = BytesIO()
|
73 |
+
image_pil.save(img_byte_arr, format='JPEG')
|
74 |
+
img_byte_arr = img_byte_arr.getvalue()
|
75 |
+
result = image_caption_client.image_to_text(img_byte_arr)
|
76 |
+
|
77 |
+
if isinstance(result, dict):
|
78 |
+
caption = result.get("generated_text") or result.get("caption") or "No caption found."
|
79 |
+
elif isinstance(result, list) and result:
|
80 |
+
caption = result[0].get("generated_text", "No caption found.")
|
81 |
+
elif isinstance(result, str):
|
82 |
+
caption = result
|
83 |
+
else:
|
84 |
+
caption = "No caption found."
|
85 |
+
|
86 |
+
return {"result": caption}
|
87 |
+
except Exception as e:
|
88 |
+
return JSONResponse(status_code=500, content={"error": str(e)})
|
89 |
|
90 |
@app.post("/api/qa")
|
91 |
+
async def question_answering(file: UploadFile = File(...), question: str = Form(...)):
|
92 |
+
try:
|
93 |
+
content_type = file.content_type
|
94 |
+
if content_type.startswith("image/"):
|
95 |
+
image_bytes = await file.read()
|
96 |
+
image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
97 |
+
image_pil.thumbnail((1024, 1024))
|
98 |
+
img_byte_arr = BytesIO()
|
99 |
+
image_pil.save(img_byte_arr, format='JPEG')
|
100 |
+
img_byte_arr = img_byte_arr.getvalue()
|
101 |
+
result = image_caption_client.image_to_text(img_byte_arr)
|
102 |
+
context = result.get("generated_text") if isinstance(result, dict) else result
|
103 |
+
else:
|
104 |
+
text = process_uploaded_file(file)
|
105 |
+
if len(text) < 20:
|
106 |
+
return {"result": "Document too short to answer questions."}
|
107 |
+
context = text[:3000]
|
108 |
|
109 |
+
if not context:
|
110 |
+
return {"result": "No context available to answer."}
|
|
|
111 |
|
112 |
+
answer = qa_client.question_answering(question=question, context=context)
|
113 |
+
return {"result": answer.get("answer", "No answer found.")}
|
|
|
114 |
|
115 |
+
except Exception as e:
|
116 |
+
return JSONResponse(status_code=500, content={"error": str(e)})
|
117 |
|
118 |
if __name__ == "__main__":
|
119 |
+
import uvicorn
|
120 |
+
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|