Update main.py
Browse files
main.py
CHANGED
@@ -1,126 +1,89 @@
|
|
1 |
-
import
|
2 |
-
from fastapi import FastAPI, UploadFile, File, HTTPException
|
3 |
-
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from fastapi.responses import JSONResponse
|
5 |
-
from
|
6 |
-
|
|
|
|
|
7 |
from PIL import Image
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
return
|
63 |
-
|
64 |
-
|
65 |
-
def
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
Question: {question}
|
92 |
-
Answer:"""
|
93 |
-
)
|
94 |
-
_qa_chain = LLMChain(llm=llm, prompt=prompt)
|
95 |
-
return _qa_chain
|
96 |
-
|
97 |
-
# ----------------
|
98 |
-
# Routes
|
99 |
-
# ----------------
|
100 |
-
@app.post("/summarize")
|
101 |
-
def summarize(req: SummarizeRequest):
|
102 |
-
summarizer = get_summarizer()
|
103 |
-
result = summarizer(
|
104 |
-
req.text,
|
105 |
-
max_length=req.max_length,
|
106 |
-
min_length=req.min_length,
|
107 |
-
clean_up_tokenization_spaces=True
|
108 |
-
)
|
109 |
-
return JSONResponse(content={"summary": result[0]["summary_text"]})
|
110 |
-
|
111 |
-
@app.post("/caption")
|
112 |
-
async def caption_image(file: UploadFile = File(...)):
|
113 |
-
try:
|
114 |
-
img = Image.open(file.file).convert("RGB")
|
115 |
-
captioner = get_image_captioner()
|
116 |
-
result = captioner(img)
|
117 |
-
return JSONResponse(content={"caption": result[0]["generated_text"]})
|
118 |
-
except Exception as e:
|
119 |
-
raise HTTPException(status_code=400, detail=str(e))
|
120 |
-
|
121 |
-
@app.post("/qa")
|
122 |
-
def question_answer(req: QARequest):
|
123 |
-
chain = get_qa_chain()
|
124 |
-
context = req.context or ""
|
125 |
-
answer = chain.run({"context": context, "question": req.question})
|
126 |
-
return JSONResponse(content={"answer": answer})
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
|
|
|
|
2 |
from fastapi.responses import JSONResponse
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
+
import uvicorn
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
from PIL import Image
|
8 |
+
import torch
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Load tokenizers fast but not full models immediately
|
13 |
+
tokenizers = {
|
14 |
+
"qwen": AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True),
|
15 |
+
"deepseek": AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-V2-Chat", trust_remote_code=True),
|
16 |
+
"llama": AutoTokenizer.from_pretrained("meta-llama/Llama-2-70b-chat-hf", trust_remote_code=True),
|
17 |
+
}
|
18 |
+
|
19 |
+
models = {}
|
20 |
+
|
21 |
+
def load_model(name):
|
22 |
+
if name not in models:
|
23 |
+
if name == "qwen":
|
24 |
+
models[name] = AutoModelForCausalLM.from_pretrained(
|
25 |
+
"Qwen/Qwen2.5-VL-7B-Instruct",
|
26 |
+
device_map="auto",
|
27 |
+
trust_remote_code=True,
|
28 |
+
torch_dtype=torch.float16
|
29 |
+
)
|
30 |
+
elif name == "deepseek":
|
31 |
+
models[name] = AutoModelForCausalLM.from_pretrained(
|
32 |
+
"deepseek-ai/DeepSeek-V2-Chat",
|
33 |
+
device_map="auto",
|
34 |
+
trust_remote_code=True,
|
35 |
+
torch_dtype=torch.float16
|
36 |
+
)
|
37 |
+
elif name == "llama":
|
38 |
+
models[name] = AutoModelForCausalLM.from_pretrained(
|
39 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
40 |
+
device_map="auto",
|
41 |
+
trust_remote_code=True,
|
42 |
+
torch_dtype=torch.float16
|
43 |
+
)
|
44 |
+
return models[name]
|
45 |
+
|
46 |
+
@app.post("/api/summarize")
|
47 |
+
async def summarize(file: UploadFile = File(...)):
|
48 |
+
ext = os.path.splitext(file.filename)[1].lower()
|
49 |
+
temp_path = os.path.join(tempfile.gettempdir(), file.filename)
|
50 |
+
with open(temp_path, "wb") as f:
|
51 |
+
f.write(await file.read())
|
52 |
+
|
53 |
+
# For now: Just simulate basic summarization
|
54 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
55 |
+
with open(temp_path, 'r', errors='ignore') as f:
|
56 |
+
text = f.read()
|
57 |
+
|
58 |
+
if len(text) > 1024:
|
59 |
+
text = text[:1024]
|
60 |
+
|
61 |
+
summary = summarizer(text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
|
62 |
+
return JSONResponse({"result": summary})
|
63 |
+
|
64 |
+
@app.post("/api/caption")
|
65 |
+
async def caption(file: UploadFile = File(...)):
|
66 |
+
image = Image.open(await file.read())
|
67 |
+
# For now: Use a simple vision model, because Qwen2.5 VL loading takes a lot of time
|
68 |
+
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
69 |
+
caption = captioner(image)[0]['generated_text']
|
70 |
+
return JSONResponse({"result": caption})
|
71 |
+
|
72 |
+
@app.post("/api/qa")
|
73 |
+
async def question_answer(file: UploadFile = File(...), question: str = Form(...)):
|
74 |
+
temp_path = os.path.join(tempfile.gettempdir(), file.filename)
|
75 |
+
with open(temp_path, "wb") as f:
|
76 |
+
f.write(await file.read())
|
77 |
+
|
78 |
+
# For now: pick deepseek model for QA
|
79 |
+
tokenizer = tokenizers["deepseek"]
|
80 |
+
model = load_model("deepseek")
|
81 |
+
|
82 |
+
inputs = tokenizer(question, return_tensors="pt").to(model.device)
|
83 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
84 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
85 |
+
|
86 |
+
return JSONResponse({"result": answer})
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|