Spaces:
Sleeping
Sleeping
title: Plotly-Graph-Objects-Treemap-101 | |
emoji: ๐ณ๐Graph | |
colorFrom: green | |
colorTo: indigo | |
sdk: streamlit | |
sdk_version: 1.17.0 | |
app_file: app.py | |
pinned: false | |
license: mit | |
๐ Randomized Treemap Graphs for Demonstrating Data Variation ๐ | |
๐ Overview | |
- Introduction - Purpose - Data Visualization | |
๐งฎ Methodology | |
- Statistical Analysis - Random Sampling - Treemap Graphs | |
๐ Implementation - Rendering Charts with Streamlit - Example Code | |
๐ Conclusion - Summary - Use Cases - Fun Facts | |
๐ Overview ๐ Hello! In this article, we will learn about Randomized Treemap Graphs for Demonstrating Data Variation! ๐๐ | |
๐งฎ Methodology: | |
1. ๐ Statistical Analysis: We'll use statistical analysis to demonstrate variation in data. | |
2. ๐ฒ Random Sampling: We'll generate random data to create our treemap graphs. | |
3. ๐ณ Treemap Graphs: We'll use treemap graphs to display our data in a visually engaging way. | |
๐ Implementation | |
1. ๐ Rendering Charts with Streamlit: We'll use Streamlit to render our treemap graphs. | |
2. ๐ Example Code: Here's an example code snippet to get you started! | |
``` | |
import plotly.express as px | |
import streamlit as st | |
# Generate random data | |
data = px.data.tips() | |
fig = px.treemap(data, path=['day', 'time', 'value'], values='total_count') | |
# Render chart with Streamlit | |
st.plotly_chart(fig) | |
``` | |