Spaces:
Sleeping
Sleeping
A newer version of the Streamlit SDK is available:
1.44.1
metadata
title: Plotly-Graph-Objects-Treemap-101
emoji: ๐ณ๐Graph
colorFrom: green
colorTo: indigo
sdk: streamlit
sdk_version: 1.17.0
app_file: app.py
pinned: false
license: mit
๐ Randomized Treemap Graphs for Demonstrating Data Variation ๐
๐ Overview
- Introduction - Purpose - Data Visualization
๐งฎ Methodology
- Statistical Analysis - Random Sampling - Treemap Graphs
๐ Implementation - Rendering Charts with Streamlit - Example Code
๐ Conclusion - Summary - Use Cases - Fun Facts
๐ Overview ๐ Hello! In this article, we will learn about Randomized Treemap Graphs for Demonstrating Data Variation! ๐๐
๐งฎ Methodology:
- ๐ Statistical Analysis: We'll use statistical analysis to demonstrate variation in data.
- ๐ฒ Random Sampling: We'll generate random data to create our treemap graphs.
- ๐ณ Treemap Graphs: We'll use treemap graphs to display our data in a visually engaging way.
๐ Implementation
- ๐ Rendering Charts with Streamlit: We'll use Streamlit to render our treemap graphs.
- ๐ Example Code: Here's an example code snippet to get you started!
import plotly.express as px
import streamlit as st
# Generate random data
data = px.data.tips()
fig = px.treemap(data, path=['day', 'time', 'value'], values='total_count')
# Render chart with Streamlit
st.plotly_chart(fig)