Spaces:
Running
on
Zero
Running
on
Zero
#================================================================================== | |
# https://huggingface.co/spaces/asigalov61/MIDI-Genre-Classifier | |
#================================================================================== | |
print('=' * 70) | |
print('MIDI Genre Classifier Gradio App') | |
print('=' * 70) | |
print('Loading core MIDI Genre Classifier modules...') | |
import os | |
import copy | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
print('=' * 70) | |
print('Loading main MIDI Genre Classifier modules...') | |
os.environ['USE_FLASH_ATTENTION'] = '1' | |
import torch | |
torch.set_float32_matmul_precision('medium') | |
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
torch.backends.cuda.enable_mem_efficient_sdp(True) | |
torch.backends.cuda.enable_math_sdp(True) | |
torch.backends.cuda.enable_flash_sdp(True) | |
torch.backends.cuda.enable_cudnn_sdp(True) | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
import TMIDIX | |
from midi_to_colab_audio import midi_to_colab_audio | |
from x_transformer_1_23_2 import * | |
import random | |
import tqdm | |
print('=' * 70) | |
print('Loading aux MIDI Genre Classifier modules...') | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import spaces | |
print('=' * 70) | |
print('PyTorch version:', torch.__version__) | |
print('=' * 70) | |
print('Done!') | |
print('Enjoy! :)') | |
print('=' * 70) | |
#================================================================================== | |
MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_42174_steps_0.5211_loss_0.8542_acc.pth' | |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' | |
#================================================================================== | |
print('=' * 70) | |
print('Loading MIDI GAS processed scores dataset...') | |
midi_gas_ps_pickle = hf_hub_download(repo_id='asigalov61/MIDI-GAS', | |
filename='MIDI_GAS_Processed_Scores_CC_BY_NC_SA.pickle', | |
repo_type='dataset' | |
) | |
midi_gas_ps = TMIDIX.Tegridy_Any_Pickle_File_Reader(midi_gas_ps_pickle) | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#================================================================================== | |
print('=' * 70) | |
print('Loading MIDI GAS processed scores embeddings dataset...') | |
midi_gas_pse_pickle = hf_hub_download(repo_id='asigalov61/MIDI-GAS', | |
filename='MIDI_GAS_Processed_Scores_Embeddings_CC_BY_NC_SA.pickle', | |
repo_type='dataset' | |
) | |
midi_gas_pse = np.array([a[3] for a in TMIDIX.Tegridy_Any_Pickle_File_Reader(midi_gas_pse_pickle)]) | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#================================================================================== | |
print('=' * 70) | |
print('Instantiating model...') | |
device_type = 'cuda' | |
dtype = 'bfloat16' | |
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
SEQ_LEN = 8192 | |
PAD_IDX = 19463 | |
model = TransformerWrapper( | |
num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 2048, | |
depth = 8, | |
heads = 32, | |
rotary_pos_emb = True, | |
attn_flash = True | |
) | |
) | |
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX, return_cache=True) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model_checkpoint = hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer', filename=MODEL_CHECKPOINT) | |
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True)) | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
print('Model will use', dtype, 'precision...') | |
print('=' * 70) | |
#================================================================================== | |
def load_midi(input_midi): | |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi) | |
escore = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
escore_notes = TMIDIX.augment_enhanced_score_notes(escore) | |
instruments_list = list(set([y[6] for y in escore_notes])) | |
tok_score = [] | |
if 128 in instruments_list: | |
drums_present = 19331 | |
else: | |
drums_present = 19330 | |
pat = escore_notes[0][6] | |
tok_score.extend([19461, drums_present, 19332+pat]) | |
tok_score.extend(TMIDIX.multi_instrumental_escore_notes_tokenized(escore_notes)[:8190]) | |
return tok_score | |
#================================================================================== | |
def logsumexp_pooling(x, dim=1, keepdim=False): | |
max_val, _ = torch.max(x, dim=dim, keepdim=True) | |
lse = max_val + torch.log(torch.mean(torch.exp(x - max_val), dim=dim, keepdim=keepdim) + 1e-10) | |
return lse | |
def gem_pooling(x, p=3.0, eps=1e-6): | |
pooled = torch.mean(x ** p, dim=1) | |
return pooled.clamp(min=eps).pow(1 / p) | |
def median_pooling(x, dim=1): | |
return torch.median(x, dim=dim).values | |
def rms_pooling(x, dim=1): | |
return torch.sqrt(torch.mean(x ** 2, dim=dim) + 1e-6) | |
def get_embeddings(inputs): | |
with ctx: | |
with torch.no_grad(): | |
out = model(inputs) | |
cache = out[2] | |
hidden = cache.layer_hiddens[-1] | |
mean_pool = torch.mean(hidden, dim=1) | |
max_pool = torch.max(hidden, dim=1).values | |
lse_pool = logsumexp_pooling(hidden, dim=1) | |
gem_pool = gem_pooling(hidden, p=3.0) | |
median_pool = median_pooling(hidden, dim=1) | |
rms_pool = rms_pooling(hidden, dim=1) | |
concat_pool = torch.cat((mean_pool, | |
max_pool, | |
lse_pool[0][:, :512], | |
gem_pool[:, :512], | |
median_pool[:, :512], | |
rms_pool[:, :512]), dim=1) | |
return concat_pool.cpu().detach().numpy()[0] | |
#================================================================================== | |
def cosine_similarity_numpy(src_array, trg_array): | |
src_norm = np.linalg.norm(src_array) | |
trg_norms = np.linalg.norm(trg_array, axis=1) | |
dot_products = np.dot(trg_array, src_array) | |
cosine_sims = dot_products / (src_norm * trg_norms + 1e-10) | |
return cosine_sims.tolist() | |
#================================================================================== | |
def select_best_output(outputs, embeddings, src_embeddings, top_k=10): | |
emb_sims = cosine_similarity_numpy(src_embeddings, embeddings) | |
sorted_emb_sims = sorted(emb_sims, reverse=True) | |
hits = [] | |
hits_idxs = [] | |
for s in sorted_emb_sims[:top_k]: | |
idx = emb_sims.index(s) | |
hits_idxs.append(idx) | |
hits.extend([[str(s)] + outputs[idx][:3]]) | |
return hits, hits_idxs | |
#================================================================================== | |
def Classify_MIDI_Genre(input_midi): | |
#=============================================================================== | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('=' * 70) | |
print('=' * 70) | |
print('Requested settings:') | |
print('=' * 70) | |
fn = os.path.basename(input_midi) | |
fn1 = fn.split('.')[0] | |
print('Input MIDI file name:', fn) | |
print('=' * 70) | |
#=============================================================================== | |
model.to(device_type) | |
model.eval() | |
#=============================================================================== | |
print('Loading and prepping source MIDI...') | |
src_score = load_midi(input_midi.name) | |
inp = torch.LongTensor([src_score]).to(device_type) | |
src_emb = get_embeddings(inp) | |
print('Done!') | |
#=============================================================================== | |
print('Sample embeddings values', src_emb[:3]) | |
#=============================================================================== | |
print('=' * 70) | |
print('Classifying...') | |
#=============================================================================== | |
result = select_best_output(midi_gas_ps, midi_gas_pse, src_emb) | |
results_str = '' | |
for i, r in enumerate(result[0]): | |
print(' --- '.join([str(i+1).zfill(2)] + r)) | |
results_str += ' --- '.join([str(i+1).zfill(2)] + r) + '\n' | |
#=============================================================================== | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
print('=' * 70) | |
song_name = ' --- '.join(midi_gas_ps[result[1][0]][:3]) | |
print('Song entry', song_name) | |
song = midi_gas_ps[result[1][0]][3] | |
print('Sample INTs', song[:15]) | |
print('=' * 70) | |
song_f = [] | |
if len(song) != 0: | |
time = 0 | |
dur = 0 | |
vel = 90 | |
pitch = 0 | |
channel = 0 | |
patches = [-1] * 16 | |
patches[9] = 9 | |
channels = [0] * 16 | |
channels[9] = 1 | |
for ss in song: | |
if 0 <= ss < 256: | |
time += ss * 16 | |
if 256 <= ss < 2304: | |
dur = ((ss-256) // 8) * 16 | |
vel = (((ss-256) % 8)+1) * 15 | |
if 2304 <= ss < 18945: | |
patch = (ss-2304) // 129 | |
if patch < 128: | |
if patch not in patches: | |
if 0 in channels: | |
cha = channels.index(0) | |
channels[cha] = 1 | |
else: | |
cha = 15 | |
patches[cha] = patch | |
channel = patches.index(patch) | |
else: | |
channel = patches.index(patch) | |
if patch == 128: | |
channel = 9 | |
pitch = (ss-2304) % 129 | |
song_f.append(['note', time, dur, channel, pitch, vel, patch ]) | |
patches = [0 if x==-1 else x for x in patches] | |
fn1 = "MIDI-Genre-Classifier-Composition" | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
output_signature = 'MIDI Genre Classifier', | |
output_file_name = fn1, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches | |
) | |
new_fn = fn1+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
output_title = str(song_name) | |
output_midi = str(new_fn) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) | |
output_cls_results = str(results_str) | |
print('Output MIDI file name:', output_midi) | |
print('Output MIDI melody title:', output_title) | |
print('=' * 70) | |
#=============================================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_title, output_audio, output_plot, output_midi, output_cls_results | |
#================================================================================== | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
#================================================================================== | |
with gr.Blocks() as demo: | |
#================================================================================== | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Genre Classifier</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Accurately classify any MIDI by top music genre</h1>") | |
gr.HTML(""" | |
<p> | |
<a href="https://huggingface.co/spaces/asigalov61/MIDI-Genre-Classifier?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> | |
</a> | |
</p> | |
for faster execution and endless classification! | |
""") | |
#================================================================================== | |
gr.Markdown("## Upload any MIDI or select an example MIDI below") | |
input_midi = gr.File(label="Input MIDI", | |
file_types=[".midi", ".mid", ".kar"] | |
) | |
generate_btn = gr.Button("Classify", variant="primary") | |
gr.Markdown("## Classification results") | |
output_title = gr.Textbox(label="MIDI title") | |
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") | |
output_plot = gr.Plot(label="MIDI score plot") | |
output_midi = gr.File(label="MIDI file", file_types=[".mid"]) | |
output_cls_results = gr.Textbox(label="MIDI classification results") | |
generate_btn.click(Classify_MIDI_Genre, | |
[input_midi | |
], | |
[output_title, | |
output_audio, | |
output_plot, | |
output_midi, | |
output_cls_results | |
] | |
) | |
gr.Examples( | |
[["Hotel California.mid"], | |
["Come To My Window.mid"] | |
], | |
[input_midi | |
], | |
[output_title, | |
output_audio, | |
output_plot, | |
output_midi, | |
output_cls_results | |
], | |
Classify_MIDI_Genre | |
) | |
#================================================================================== | |
demo.launch() | |
#================================================================================== |