Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,987 Bytes
2975294 64f1965 2975294 64f1965 2975294 64f1965 2975294 64f1965 2975294 64f1965 2975294 64f1965 2975294 b5806f4 2975294 b5806f4 d011755 b5806f4 2975294 b5806f4 2975294 b5806f4 2975294 b5806f4 d011755 2975294 f3f03b1 2975294 f3f03b1 2975294 b5806f4 2975294 b5806f4 2975294 fae58e3 2975294 b5806f4 2975294 b5806f4 2975294 d011755 2975294 b5806f4 2975294 b5806f4 2975294 b5806f4 2975294 b5806f4 2975294 b5806f4 2975294 b5806f4 2975294 b5806f4 2975294 b5806f4 2975294 b5806f4 2975294 b5806f4 2975294 5019258 d011755 fd62faa d011755 f3f03b1 e9a989f 2975294 f67606f 2975294 d011755 2975294 5442fa6 e9a989f 2975294 d9add7e 2975294 5442fa6 2975294 fd62faa 2975294 d011755 2975294 d011755 2975294 d011755 2975294 d011755 2975294 d011755 2975294 69ec348 2975294 69ec348 2975294 69ec348 f3f03b1 69ec348 f3f03b1 69ec348 2975294 69ec348 2975294 b5806f4 2975294 64f1965 2975294 64f1965 2975294 b5806f4 2975294 f3f03b1 2975294 d011755 2975294 f3f03b1 2975294 77dacb9 2975294 d011755 2975294 77dacb9 2975294 64f1965 0e99340 b5806f4 2975294 64f1965 2975294 b5806f4 2975294 e9a989f 2975294 e9a989f 2975294 52edea7 2975294 77dacb9 2975294 77dacb9 2975294 69ec348 e9a989f 2975294 77dacb9 2975294 f67606f 77dacb9 f67606f 2975294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
#==================================================================================
# https://huggingface.co/spaces/asigalov61/MIDI-Genre-Classifier
#==================================================================================
print('=' * 70)
print('MIDI Genre Classifier Gradio App')
print('=' * 70)
print('Loading core MIDI Genre Classifier modules...')
import os
import copy
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main MIDI Genre Classifier modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('medium')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
import numpy as np
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
import tqdm
print('=' * 70)
print('Loading aux MIDI Genre Classifier modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_42174_steps_0.5211_loss_0.8542_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
#==================================================================================
print('=' * 70)
print('Loading MIDI GAS processed scores dataset...')
midi_gas_ps_pickle = hf_hub_download(repo_id='asigalov61/MIDI-GAS',
filename='MIDI_GAS_Processed_Scores_CC_BY_NC_SA.pickle',
repo_type='dataset'
)
midi_gas_ps = TMIDIX.Tegridy_Any_Pickle_File_Reader(midi_gas_ps_pickle)
print('=' * 70)
print('Done!')
print('=' * 70)
#==================================================================================
print('=' * 70)
print('Loading MIDI GAS processed scores embeddings dataset...')
midi_gas_pse_pickle = hf_hub_download(repo_id='asigalov61/MIDI-GAS',
filename='MIDI_GAS_Processed_Scores_Embeddings_CC_BY_NC_SA.pickle',
repo_type='dataset'
)
midi_gas_pse = np.array([a[3] for a in TMIDIX.Tegridy_Any_Pickle_File_Reader(midi_gas_pse_pickle)])
print('=' * 70)
print('Done!')
print('=' * 70)
#==================================================================================
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 8192
PAD_IDX = 19463
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 8,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX, return_cache=True)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer', filename=MODEL_CHECKPOINT)
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
def load_midi(input_midi):
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
escore = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore_notes = TMIDIX.augment_enhanced_score_notes(escore)
instruments_list = list(set([y[6] for y in escore_notes]))
tok_score = []
if 128 in instruments_list:
drums_present = 19331
else:
drums_present = 19330
pat = escore_notes[0][6]
tok_score.extend([19461, drums_present, 19332+pat])
tok_score.extend(TMIDIX.multi_instrumental_escore_notes_tokenized(escore_notes)[:8190])
return tok_score
#==================================================================================
def logsumexp_pooling(x, dim=1, keepdim=False):
max_val, _ = torch.max(x, dim=dim, keepdim=True)
lse = max_val + torch.log(torch.mean(torch.exp(x - max_val), dim=dim, keepdim=keepdim) + 1e-10)
return lse
def gem_pooling(x, p=3.0, eps=1e-6):
pooled = torch.mean(x ** p, dim=1)
return pooled.clamp(min=eps).pow(1 / p)
def median_pooling(x, dim=1):
return torch.median(x, dim=dim).values
def rms_pooling(x, dim=1):
return torch.sqrt(torch.mean(x ** 2, dim=dim) + 1e-6)
def get_embeddings(inputs):
with ctx:
with torch.no_grad():
out = model(inputs)
cache = out[2]
hidden = cache.layer_hiddens[-1]
mean_pool = torch.mean(hidden, dim=1)
max_pool = torch.max(hidden, dim=1).values
lse_pool = logsumexp_pooling(hidden, dim=1)
gem_pool = gem_pooling(hidden, p=3.0)
median_pool = median_pooling(hidden, dim=1)
rms_pool = rms_pooling(hidden, dim=1)
concat_pool = torch.cat((mean_pool,
max_pool,
lse_pool[0][:, :512],
gem_pool[:, :512],
median_pool[:, :512],
rms_pool[:, :512]), dim=1)
return concat_pool.cpu().detach().numpy()[0]
#==================================================================================
def cosine_similarity_numpy(src_array, trg_array):
src_norm = np.linalg.norm(src_array)
trg_norms = np.linalg.norm(trg_array, axis=1)
dot_products = np.dot(trg_array, src_array)
cosine_sims = dot_products / (src_norm * trg_norms + 1e-10)
return cosine_sims.tolist()
#==================================================================================
def select_best_output(outputs, embeddings, src_embeddings, top_k=10):
emb_sims = cosine_similarity_numpy(src_embeddings, embeddings)
sorted_emb_sims = sorted(emb_sims, reverse=True)
hits = []
hits_idxs = []
for s in sorted_emb_sims[:top_k]:
idx = emb_sims.index(s)
hits_idxs.append(idx)
hits.extend([[str(s)] + outputs[idx][:3]])
return hits, hits_idxs
#==================================================================================
@spaces.GPU
def Classify_MIDI_Genre(input_midi):
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('=' * 70)
print('Requested settings:')
print('=' * 70)
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
print('Input MIDI file name:', fn)
print('=' * 70)
#===============================================================================
model.to(device_type)
model.eval()
#===============================================================================
print('Loading and prepping source MIDI...')
src_score = load_midi(input_midi.name)
inp = torch.LongTensor([src_score]).to(device_type)
src_emb = get_embeddings(inp)
print('Done!')
#===============================================================================
print('Sample embeddings values', src_emb[:3])
#===============================================================================
print('=' * 70)
print('Classifying...')
#===============================================================================
result = select_best_output(midi_gas_ps, midi_gas_pse, src_emb)
results_str = ''
for i, r in enumerate(result[0]):
print(' --- '.join([str(i+1).zfill(2)] + r))
results_str += ' --- '.join([str(i+1).zfill(2)] + r) + '\n'
#===============================================================================
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
song_name = ' --- '.join(midi_gas_ps[result[1][0]][:3])
print('Song entry', song_name)
song = midi_gas_ps[result[1][0]][3]
print('Sample INTs', song[:15])
print('=' * 70)
song_f = []
if len(song) != 0:
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
patches[9] = 9
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
fn1 = "MIDI-Genre-Classifier-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'MIDI Genre Classifier',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#===============================================================================
output_title = str(song_name)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
output_cls_results = str(results_str)
print('Output MIDI file name:', output_midi)
print('Output MIDI melody title:', output_title)
print('=' * 70)
#===============================================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_title, output_audio, output_plot, output_midi, output_cls_results
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Genre Classifier</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Accurately classify any MIDI by top music genre</h1>")
gr.HTML("""
<p>
<a href="https://huggingface.co/spaces/asigalov61/MIDI-Genre-Classifier?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless classification!
""")
#==================================================================================
gr.Markdown("## Upload any MIDI or select an example MIDI below")
input_midi = gr.File(label="Input MIDI",
file_types=[".midi", ".mid", ".kar"]
)
generate_btn = gr.Button("Classify", variant="primary")
gr.Markdown("## Classification results")
output_title = gr.Textbox(label="MIDI title")
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="MIDI score plot")
output_midi = gr.File(label="MIDI file", file_types=[".mid"])
output_cls_results = gr.Textbox(label="MIDI classification results")
generate_btn.click(Classify_MIDI_Genre,
[input_midi
],
[output_title,
output_audio,
output_plot,
output_midi,
output_cls_results
]
)
gr.Examples(
[["Hotel California.mid"],
["Come To My Window.mid"]
],
[input_midi
],
[output_title,
output_audio,
output_plot,
output_midi,
output_cls_results
],
Classify_MIDI_Genre
)
#==================================================================================
demo.launch()
#================================================================================== |