#================================================================================== # https://huggingface.co/spaces/asigalov61/MIDI-Genre-Classifier #================================================================================== print('=' * 70) print('MIDI Genre Classifier Gradio App') print('=' * 70) print('Loading core MIDI Genre Classifier modules...') import os import copy import time as reqtime import datetime from pytz import timezone print('=' * 70) print('Loading main MIDI Genre Classifier modules...') os.environ['USE_FLASH_ATTENTION'] = '1' import torch torch.set_float32_matmul_precision('medium') torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_cudnn_sdp(True) import numpy as np from huggingface_hub import hf_hub_download import TMIDIX from midi_to_colab_audio import midi_to_colab_audio from x_transformer_1_23_2 import * import random import tqdm print('=' * 70) print('Loading aux MIDI Genre Classifier modules...') import matplotlib.pyplot as plt import gradio as gr import spaces print('=' * 70) print('PyTorch version:', torch.__version__) print('=' * 70) print('Done!') print('Enjoy! :)') print('=' * 70) #================================================================================== MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_42174_steps_0.5211_loss_0.8542_acc.pth' SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' #================================================================================== print('=' * 70) print('Loading MIDI GAS processed scores dataset...') midi_gas_ps_pickle = hf_hub_download(repo_id='asigalov61/MIDI-GAS', filename='MIDI_GAS_Processed_Scores_CC_BY_NC_SA.pickle', repo_type='dataset' ) midi_gas_ps = TMIDIX.Tegridy_Any_Pickle_File_Reader(midi_gas_ps_pickle) print('=' * 70) print('Done!') print('=' * 70) #================================================================================== print('=' * 70) print('Loading MIDI GAS processed scores embeddings dataset...') midi_gas_pse_pickle = hf_hub_download(repo_id='asigalov61/MIDI-GAS', filename='MIDI_GAS_Processed_Scores_Embeddings_CC_BY_NC_SA.pickle', repo_type='dataset' ) midi_gas_pse = np.array([a[3] for a in TMIDIX.Tegridy_Any_Pickle_File_Reader(midi_gas_pse_pickle)]) print('=' * 70) print('Done!') print('=' * 70) #================================================================================== print('=' * 70) print('Instantiating model...') device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 8192 PAD_IDX = 19463 model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 2048, depth = 8, heads = 32, rotary_pos_emb = True, attn_flash = True ) ) model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX, return_cache=True) print('=' * 70) print('Loading model checkpoint...') model_checkpoint = hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer', filename=MODEL_CHECKPOINT) model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True)) print('=' * 70) print('Done!') print('=' * 70) print('Model will use', dtype, 'precision...') print('=' * 70) #================================================================================== def load_midi(input_midi): raw_score = TMIDIX.midi2single_track_ms_score(input_midi) escore = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] escore_notes = TMIDIX.augment_enhanced_score_notes(escore) instruments_list = list(set([y[6] for y in escore_notes])) tok_score = [] if 128 in instruments_list: drums_present = 19331 else: drums_present = 19330 pat = escore_notes[0][6] tok_score.extend([19461, drums_present, 19332+pat]) tok_score.extend(TMIDIX.multi_instrumental_escore_notes_tokenized(escore_notes)[:8190]) return tok_score #================================================================================== def logsumexp_pooling(x, dim=1, keepdim=False): max_val, _ = torch.max(x, dim=dim, keepdim=True) lse = max_val + torch.log(torch.mean(torch.exp(x - max_val), dim=dim, keepdim=keepdim) + 1e-10) return lse def gem_pooling(x, p=3.0, eps=1e-6): pooled = torch.mean(x ** p, dim=1) return pooled.clamp(min=eps).pow(1 / p) def median_pooling(x, dim=1): return torch.median(x, dim=dim).values def rms_pooling(x, dim=1): return torch.sqrt(torch.mean(x ** 2, dim=dim) + 1e-6) def get_embeddings(inputs): with ctx: with torch.no_grad(): out = model(inputs) cache = out[2] hidden = cache.layer_hiddens[-1] mean_pool = torch.mean(hidden, dim=1) max_pool = torch.max(hidden, dim=1).values lse_pool = logsumexp_pooling(hidden, dim=1) gem_pool = gem_pooling(hidden, p=3.0) median_pool = median_pooling(hidden, dim=1) rms_pool = rms_pooling(hidden, dim=1) concat_pool = torch.cat((mean_pool, max_pool, lse_pool[0][:, :512], gem_pool[:, :512], median_pool[:, :512], rms_pool[:, :512]), dim=1) return concat_pool.cpu().detach().numpy()[0] #================================================================================== def cosine_similarity_numpy(src_array, trg_array): src_norm = np.linalg.norm(src_array) trg_norms = np.linalg.norm(trg_array, axis=1) dot_products = np.dot(trg_array, src_array) cosine_sims = dot_products / (src_norm * trg_norms + 1e-10) return cosine_sims.tolist() #================================================================================== def select_best_output(outputs, embeddings, src_embeddings, top_k=10): emb_sims = cosine_similarity_numpy(src_embeddings, embeddings) sorted_emb_sims = sorted(emb_sims, reverse=True) hits = [] hits_idxs = [] for s in sorted_emb_sims[:top_k]: idx = emb_sims.index(s) hits_idxs.append(idx) hits.extend([[str(s)] + outputs[idx][:3]]) return hits, hits_idxs #================================================================================== @spaces.GPU def Classify_MIDI_Genre(input_midi): #=============================================================================== print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) print('=' * 70) print('Requested settings:') print('=' * 70) fn = os.path.basename(input_midi) fn1 = fn.split('.')[0] print('Input MIDI file name:', fn) print('=' * 70) #=============================================================================== model.to(device_type) model.eval() #=============================================================================== print('Loading and prepping source MIDI...') src_score = load_midi(input_midi.name) inp = torch.LongTensor([src_score]).to(device_type) src_emb = get_embeddings(inp) print('Done!') #=============================================================================== print('Sample embeddings values', src_emb[:3]) #=============================================================================== print('=' * 70) print('Classifying...') #=============================================================================== result = select_best_output(midi_gas_ps, midi_gas_pse, src_emb) results_str = '' for i, r in enumerate(result[0]): print(' --- '.join([str(i+1).zfill(2)] + r)) results_str += ' --- '.join([str(i+1).zfill(2)] + r) + '\n' #=============================================================================== print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') print('=' * 70) song_name = ' --- '.join(midi_gas_ps[result[1][0]][:3]) print('Song entry', song_name) song = midi_gas_ps[result[1][0]][3] print('Sample INTs', song[:15]) print('=' * 70) song_f = [] if len(song) != 0: time = 0 dur = 0 vel = 90 pitch = 0 channel = 0 patches = [-1] * 16 patches[9] = 9 channels = [0] * 16 channels[9] = 1 for ss in song: if 0 <= ss < 256: time += ss * 16 if 256 <= ss < 2304: dur = ((ss-256) // 8) * 16 vel = (((ss-256) % 8)+1) * 15 if 2304 <= ss < 18945: patch = (ss-2304) // 129 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-2304) % 129 song_f.append(['note', time, dur, channel, pitch, vel, patch ]) patches = [0 if x==-1 else x for x in patches] fn1 = "MIDI-Genre-Classifier-Composition" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, output_signature = 'MIDI Genre Classifier', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=SOUDFONT_PATH, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #=============================================================================== output_title = str(song_name) output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) output_cls_results = str(results_str) print('Output MIDI file name:', output_midi) print('Output MIDI melody title:', output_title) print('=' * 70) #=============================================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_title, output_audio, output_plot, output_midi, output_cls_results #================================================================================== PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) #================================================================================== with gr.Blocks() as demo: #================================================================================== gr.Markdown("