asigalov61's picture
Update app.py
b8e4da9 verified
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Karaoke-Transformer
#==================================================================================
print('=' * 70)
print('Karaoke Transformer Gradio App')
print('=' * 70)
print('Loading core Karaoke Transformer modules...')
import os
import copy
import pickle
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Karaoke Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('medium')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
from huggingface_hub import hf_hub_download
import TMIDIX
import SyllablesSearch
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
import tqdm
print('=' * 70)
print('Loading aux Karaoke Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
KAR_MODEL_CHECKPOINT = 'Karaoke_Transformer_Lyr2Mel_Trained_Model_3910_steps_0.186_loss_0.9456_acc.pth'
ACC_MODEL_CHECKPOINT = 'Guided_Accompaniment_Transformer_Trained_Model_36457_steps_0.5384_loss_0.8417_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
MAX_NUM_GEN_WORDS = 56
#==================================================================================
print('=' * 70)
print('Instantiating karaoke model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 3072
PAD_IDX = 20387
kar_model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024,
depth = 4,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
kar_model = AutoregressiveWrapper(kar_model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
kar_model_checkpoint = hf_hub_download(repo_id='asigalov61/Karaoke-Transformer', filename=KAR_MODEL_CHECKPOINT)
kar_model.load_state_dict(torch.load(kar_model_checkpoint, map_location='cpu', weights_only=True))
kar_model = torch.compile(kar_model, mode='max-autotune')
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
print('=' * 70)
print('Instantiating accompaniment model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 4096
PAD_IDX = 1794
acc_model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 4,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
acc_model = AutoregressiveWrapper(acc_model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
acc_model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=ACC_MODEL_CHECKPOINT)
acc_model.load_state_dict(torch.load(acc_model_checkpoint, map_location='cpu', weights_only=True))
acc_model = torch.compile(acc_model, mode='max-autotune')
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
print('Loading karaoke words list and dict...')
kar_words_list_dict_pickle = hf_hub_download(repo_id='asigalov61/Karaoke-Transformer', filename='all_words_list_dict.pickle')
with open(kar_words_list_dict_pickle, 'rb') as f:
all_words_list, all_words_dict = pickle.load(f)
print('Done!')
print('=' * 70)
#==================================================================================
@spaces.GPU
def Generate_Karaoke(input_lyrics,
model_temperature,
model_sampling_top_k
):
#===============================================================================
def generate_full_seq(input_seq,
max_toks=3072,
temperature=0.9,
top_k_value=15,
verbose=True
):
seq_abs_run_time = sum([t for t in input_seq if t < 128])
cur_time = 0
full_seq = copy.deepcopy(input_seq)
toks_counter = 0
while cur_time <= seq_abs_run_time+32:
if verbose:
if toks_counter % 128 == 0:
print('Generated', toks_counter, 'tokens')
x = torch.LongTensor(full_seq).cuda()
with ctx:
out = acc_model.generate(x,
1,
filter_logits_fn=top_k,
filter_kwargs={'k': top_k_value},
temperature=temperature,
return_prime=False,
verbose=False
)
y = out.tolist()[0][0]
if y < 128:
cur_time += y
full_seq.append(y)
toks_counter += 1
if toks_counter == max_toks:
return full_seq
return full_seq
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('Requested settings:')
print('=' * 70)
print('Input lyrics:', input_lyrics)
print('=' * 70)
print('Model temperature:', model_temperature)
print('Model top k:', model_sampling_top_k)
print('=' * 70)
#==================================================================
print('=' * 70)
print('Generating...')
#==================================================================
kar_model.to(device_type)
kar_model.eval()
acc_model.to(device_type)
acc_model.eval()
#==================================================================
lyric_toks = [20384]
if input_lyrics != '':
lyrics_clean = TMIDIX.clean_string(input_lyrics.replace('\n', ' '), regex='[^a-zA-Z ]').lower().strip()
syl_toks = [s for s in SyllablesSearch.split_words(lyrics_clean.split(' ')) if s != ' ']
for l in syl_toks:
if l in all_words_list:
lyric_toks.append(all_words_dict[tuple(l)]+384)
lyric_toks.append(20385)
#==================================================================
x = torch.LongTensor(lyric_toks).cuda()
with ctx:
out = kar_model.generate(x,
768,
temperature=model_temperature,
filter_logits_fn=top_k,
filter_kwargs={'k': model_sampling_top_k},
return_prime=False,
eos_token=20386,
verbose=True)
y = out.tolist()
#==================================================================
decoded_lyrics = []
for tok in y[0]:
if 383 < tok < 20384:
decoded_lyrics.append(all_words_list[tok-384])
decoded_lyrics = decoded_lyrics[:MAX_NUM_GEN_WORDS]
print('=' * 70)
print('Done!')
print('=' * 70)
#==================================================================
score = [t for t in y[0] if t < 384][:MAX_NUM_GEN_WORDS*3]
#==================================================================
start_score_seq = [1792] + score + [1793]
#==================================================================
print('Generating accompaniment...')
input_seq = generate_full_seq(start_score_seq,
temperature=model_temperature,
top_k_value=model_sampling_top_k
)
final_song = input_seq[len(start_score_seq):]
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', final_song[:15])
print('=' * 70)
song_f = []
psong_f = []
if len(final_song) != 0:
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patch = 0
channels_map = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 9, 12, 13, 14, 15]
patches_map = [40, 0, 10, 19, 24, 35, 40, 52, 56, 9, 65, 73, 0, 0, 0, 0]
velocities_map = [125, 80, 100, 80, 90, 100, 100, 80, 110, 110, 110, 110, 80, 80, 80, 80]
widx = 0
for m in final_song:
if 0 <= m < 128:
time += m * 32
elif 128 < m < 256:
dur = (m-128) * 32
elif 256 < m < 1792:
cha = (m-256) // 128
pitch = (m-256) % 128
channel = channels_map[cha]
patch = patches_map[channel]
vel = velocities_map[channel]
song_f.append(['note', time, dur, channel, pitch, vel, patch])
psong_f.append(['note', time, dur, channel, pitch, vel, patch])
if cha == 0:
song_f.append(['lyric', time, decoded_lyrics[widx]])
widx += 1
if widx == len(decoded_lyrics):
break
fn1 = "Karaoke-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Karaoke Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches_map
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi = str(new_fn)
output_audio = (16000, audio)
output_lyrics = ' '.join(decoded_lyrics)
output_plot = TMIDIX.plot_ms_SONG(psong_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_audio, output_plot, output_midi, output_lyrics
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Karaoke Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate Karaoke MIDI composition from any lyrics</h1>")
gr.HTML("""
<p>
<a href="https://huggingface.co/spaces/asigalov61/Karaoke-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
gr.Markdown("## Enter desired lyrics below")
input_lyrics = gr.Textbox(label="Input lyrics", value="So close no matter how far\nCould not be much more from the heart\nForever trusting who we are\nAnd nothing else matters")
gr.Markdown("## Generation options")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
model_sampling_top_k = gr.Slider(1, 100, value=5, step=1, label="Model sampling top k value")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Generation results")
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="MIDI score plot")
output_lyrics = gr.Textbox(label="MIDI lyrics")
output_midi = gr.File(label="MIDI file", file_types=[".mid"])
generate_btn.click(Generate_Karaoke,
[input_lyrics,
model_temperature,
model_sampling_top_k
],
[output_audio,
output_plot,
output_midi,
output_lyrics
]
)
#==================================================================================
demo.launch()
#==================================================================================