#================================================================================== # https://huggingface.co/spaces/asigalov61/Karaoke-Transformer #================================================================================== print('=' * 70) print('Karaoke Transformer Gradio App') print('=' * 70) print('Loading core Karaoke Transformer modules...') import os import copy import pickle import time as reqtime import datetime from pytz import timezone print('=' * 70) print('Loading main Karaoke Transformer modules...') os.environ['USE_FLASH_ATTENTION'] = '1' import torch torch.set_float32_matmul_precision('medium') torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_cudnn_sdp(True) from huggingface_hub import hf_hub_download import TMIDIX import SyllablesSearch from midi_to_colab_audio import midi_to_colab_audio from x_transformer_1_23_2 import * import random import tqdm print('=' * 70) print('Loading aux Karaoke Transformer modules...') import matplotlib.pyplot as plt import gradio as gr import spaces print('=' * 70) print('PyTorch version:', torch.__version__) print('=' * 70) print('Done!') print('Enjoy! :)') print('=' * 70) #================================================================================== KAR_MODEL_CHECKPOINT = 'Karaoke_Transformer_Lyr2Mel_Trained_Model_3910_steps_0.186_loss_0.9456_acc.pth' ACC_MODEL_CHECKPOINT = 'Guided_Accompaniment_Transformer_Trained_Model_36457_steps_0.5384_loss_0.8417_acc.pth' SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' MAX_NUM_GEN_WORDS = 56 #================================================================================== print('=' * 70) print('Instantiating karaoke model...') device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 3072 PAD_IDX = 20387 kar_model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 4, heads = 32, rotary_pos_emb = True, attn_flash = True ) ) kar_model = AutoregressiveWrapper(kar_model, ignore_index=PAD_IDX, pad_value=PAD_IDX) print('=' * 70) print('Loading model checkpoint...') kar_model_checkpoint = hf_hub_download(repo_id='asigalov61/Karaoke-Transformer', filename=KAR_MODEL_CHECKPOINT) kar_model.load_state_dict(torch.load(kar_model_checkpoint, map_location='cpu', weights_only=True)) kar_model = torch.compile(kar_model, mode='max-autotune') print('=' * 70) print('Done!') print('=' * 70) print('Model will use', dtype, 'precision...') print('=' * 70) #================================================================================== print('=' * 70) print('Instantiating accompaniment model...') device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 4096 PAD_IDX = 1794 acc_model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 2048, depth = 4, heads = 32, rotary_pos_emb = True, attn_flash = True ) ) acc_model = AutoregressiveWrapper(acc_model, ignore_index=PAD_IDX, pad_value=PAD_IDX) print('=' * 70) print('Loading model checkpoint...') acc_model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=ACC_MODEL_CHECKPOINT) acc_model.load_state_dict(torch.load(acc_model_checkpoint, map_location='cpu', weights_only=True)) acc_model = torch.compile(acc_model, mode='max-autotune') print('=' * 70) print('Done!') print('=' * 70) print('Model will use', dtype, 'precision...') print('=' * 70) #================================================================================== print('Loading karaoke words list and dict...') kar_words_list_dict_pickle = hf_hub_download(repo_id='asigalov61/Karaoke-Transformer', filename='all_words_list_dict.pickle') with open(kar_words_list_dict_pickle, 'rb') as f: all_words_list, all_words_dict = pickle.load(f) print('Done!') print('=' * 70) #================================================================================== @spaces.GPU def Generate_Karaoke(input_lyrics, model_temperature, model_sampling_top_k ): #=============================================================================== def generate_full_seq(input_seq, max_toks=3072, temperature=0.9, top_k_value=15, verbose=True ): seq_abs_run_time = sum([t for t in input_seq if t < 128]) cur_time = 0 full_seq = copy.deepcopy(input_seq) toks_counter = 0 while cur_time <= seq_abs_run_time+32: if verbose: if toks_counter % 128 == 0: print('Generated', toks_counter, 'tokens') x = torch.LongTensor(full_seq).cuda() with ctx: out = acc_model.generate(x, 1, filter_logits_fn=top_k, filter_kwargs={'k': top_k_value}, temperature=temperature, return_prime=False, verbose=False ) y = out.tolist()[0][0] if y < 128: cur_time += y full_seq.append(y) toks_counter += 1 if toks_counter == max_toks: return full_seq return full_seq #=============================================================================== print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) print('Requested settings:') print('=' * 70) print('Input lyrics:', input_lyrics) print('=' * 70) print('Model temperature:', model_temperature) print('Model top k:', model_sampling_top_k) print('=' * 70) #================================================================== print('=' * 70) print('Generating...') #================================================================== kar_model.to(device_type) kar_model.eval() acc_model.to(device_type) acc_model.eval() #================================================================== lyric_toks = [20384] if input_lyrics != '': lyrics_clean = TMIDIX.clean_string(input_lyrics.replace('\n', ' '), regex='[^a-zA-Z ]').lower().strip() syl_toks = [s for s in SyllablesSearch.split_words(lyrics_clean.split(' ')) if s != ' '] for l in syl_toks: if l in all_words_list: lyric_toks.append(all_words_dict[tuple(l)]+384) lyric_toks.append(20385) #================================================================== x = torch.LongTensor(lyric_toks).cuda() with ctx: out = kar_model.generate(x, 768, temperature=model_temperature, filter_logits_fn=top_k, filter_kwargs={'k': model_sampling_top_k}, return_prime=False, eos_token=20386, verbose=True) y = out.tolist() #================================================================== decoded_lyrics = [] for tok in y[0]: if 383 < tok < 20384: decoded_lyrics.append(all_words_list[tok-384]) decoded_lyrics = decoded_lyrics[:MAX_NUM_GEN_WORDS] print('=' * 70) print('Done!') print('=' * 70) #================================================================== score = [t for t in y[0] if t < 384][:MAX_NUM_GEN_WORDS*3] #================================================================== start_score_seq = [1792] + score + [1793] #================================================================== print('Generating accompaniment...') input_seq = generate_full_seq(start_score_seq, temperature=model_temperature, top_k_value=model_sampling_top_k ) final_song = input_seq[len(start_score_seq):] print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') print('=' * 70) print('Sample INTs', final_song[:15]) print('=' * 70) song_f = [] psong_f = [] if len(final_song) != 0: time = 0 dur = 0 vel = 90 pitch = 0 channel = 0 patch = 0 channels_map = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 9, 12, 13, 14, 15] patches_map = [40, 0, 10, 19, 24, 35, 40, 52, 56, 9, 65, 73, 0, 0, 0, 0] velocities_map = [125, 80, 100, 80, 90, 100, 100, 80, 110, 110, 110, 110, 80, 80, 80, 80] widx = 0 for m in final_song: if 0 <= m < 128: time += m * 32 elif 128 < m < 256: dur = (m-128) * 32 elif 256 < m < 1792: cha = (m-256) // 128 pitch = (m-256) % 128 channel = channels_map[cha] patch = patches_map[channel] vel = velocities_map[channel] song_f.append(['note', time, dur, channel, pitch, vel, patch]) psong_f.append(['note', time, dur, channel, pitch, vel, patch]) if cha == 0: song_f.append(['lyric', time, decoded_lyrics[widx]]) widx += 1 if widx == len(decoded_lyrics): break fn1 = "Karaoke-Transformer-Composition" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, output_signature = 'Karaoke Transformer', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches_map ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=SOUDFONT_PATH, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi = str(new_fn) output_audio = (16000, audio) output_lyrics = ' '.join(decoded_lyrics) output_plot = TMIDIX.plot_ms_SONG(psong_f, plot_title=output_midi, return_plt=True) print('Output MIDI file name:', output_midi) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_audio, output_plot, output_midi, output_lyrics #================================================================================== PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) #================================================================================== with gr.Blocks() as demo: #================================================================================== gr.Markdown("

Karaoke Transformer

") gr.Markdown("

Generate Karaoke MIDI composition from any lyrics

") gr.HTML("""

Duplicate in Hugging Face

for faster execution and endless generation! """) #================================================================================== gr.Markdown("## Enter desired lyrics below") input_lyrics = gr.Textbox(label="Input lyrics", value="So close no matter how far\nCould not be much more from the heart\nForever trusting who we are\nAnd nothing else matters") gr.Markdown("## Generation options") model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") model_sampling_top_k = gr.Slider(1, 100, value=5, step=1, label="Model sampling top k value") generate_btn = gr.Button("Generate", variant="primary") gr.Markdown("## Generation results") output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") output_plot = gr.Plot(label="MIDI score plot") output_lyrics = gr.Textbox(label="MIDI lyrics") output_midi = gr.File(label="MIDI file", file_types=[".mid"]) generate_btn.click(Generate_Karaoke, [input_lyrics, model_temperature, model_sampling_top_k ], [output_audio, output_plot, output_midi, output_lyrics ] ) #================================================================================== demo.launch() #==================================================================================