Spaces:
Running
Running
File size: 15,100 Bytes
a3ef88a a5da942 4d440f4 a3ef88a 16dca97 36ecd1e 16dca97 a3ef88a 36ecd1e a3ef88a cee38fa d0604a0 7dd2cd1 a3ef88a 36ecd1e a3ef88a b2f373f a3ef88a b9ced4c a3ef88a b8ca4b2 a3ef88a 987c189 a3ef88a 36ecd1e a3ef88a 4154701 a3ef88a 3a23894 7dd057d 465603c 053cdcc a3ef88a b8e4da9 da6ee62 a3ef88a 47be7bd 7dd057d 47be7bd 7dd057d 47be7bd 7dd057d 47be7bd 7dd057d 47be7bd 7dd057d 47be7bd 7dd057d 47be7bd e02c3f7 0792426 7dd057d a3ef88a 7dd057d a3ef88a 7dd057d 6b6f593 7dd057d 6b6f593 7dd057d 2cb6a42 7dd057d 2cb6a42 7dd057d a3ef88a 7dd057d a3ef88a d0604a0 9cd9938 d0604a0 4154701 0403a1b 773571c d0604a0 a3ef88a 98cb603 cee38fa e084a2b cee38fa 1ad380e cee38fa e084a2b cee38fa 74b9db5 cee38fa e084a2b cee38fa 98cb603 a3ef88a 98cb603 b8ca4b2 06f05a8 773571c 98cb603 bc6831a 98cb603 bc6831a 98cb603 9cd9938 0403a1b 98cb603 eb9280b 778a081 9cd9938 b8e4da9 151dbdb b81318c 9cd9938 ea6350b 89b00b1 527be6f 9cd9938 da6ee62 9cd9938 eb9280b 89b00b1 773571c a5db927 92b3ee4 98cb603 a3ef88a 98cb603 a3ef88a 98cb603 a3ef88a bc6831a 98cb603 a3ef88a 98cb603 da6ee62 a3ef88a 98cb603 a3ef88a 98cb603 20a4294 98cb603 20a4294 da6ee62 20a4294 ea6350b 20a4294 98cb603 da6ee62 7dd2cd1 ea6350b a81680a ea6350b 36ecd1e 98cb603 36ecd1e 98cb603 20a4294 98cb603 bc6831a 98cb603 96ba707 98cb603 930090d 98cb603 dd9d99a 98cb603 89b00b1 a3ef88a da6ee62 98cb603 a3ef88a 98cb603 bc6831a 98cb603 bc6831a a3ef88a 89b00b1 98cb603 a3ef88a 8edbfbe 5c91d9e a3ef88a 205c7b8 5c91d9e a5da942 9748eb8 36ecd1e aeee50c 14b9312 5c91d9e 2c6a087 8586ed2 7dd057d a3ef88a b8e4da9 a3ef88a 601785e a3ef88a 151dbdb a3ef88a 601785e a3ef88a 601785e 89b00b1 7df01ae d0604a0 7dd057d 773571c a3ef88a 92b3ee4 7e1768b 89b00b1 7e1768b a3ef88a 98cb603 8edbfbe b506373 8edbfbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Karaoke-Transformer
#==================================================================================
print('=' * 70)
print('Karaoke Transformer Gradio App')
print('=' * 70)
print('Loading core Karaoke Transformer modules...')
import os
import copy
import pickle
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Karaoke Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('medium')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
from huggingface_hub import hf_hub_download
import TMIDIX
import SyllablesSearch
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
import tqdm
print('=' * 70)
print('Loading aux Karaoke Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
KAR_MODEL_CHECKPOINT = 'Karaoke_Transformer_Lyr2Mel_Trained_Model_3910_steps_0.186_loss_0.9456_acc.pth'
ACC_MODEL_CHECKPOINT = 'Guided_Accompaniment_Transformer_Trained_Model_36457_steps_0.5384_loss_0.8417_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
MAX_NUM_GEN_WORDS = 56
#==================================================================================
print('=' * 70)
print('Instantiating karaoke model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 3072
PAD_IDX = 20387
kar_model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024,
depth = 4,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
kar_model = AutoregressiveWrapper(kar_model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
kar_model_checkpoint = hf_hub_download(repo_id='asigalov61/Karaoke-Transformer', filename=KAR_MODEL_CHECKPOINT)
kar_model.load_state_dict(torch.load(kar_model_checkpoint, map_location='cpu', weights_only=True))
kar_model = torch.compile(kar_model, mode='max-autotune')
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
print('=' * 70)
print('Instantiating accompaniment model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 4096
PAD_IDX = 1794
acc_model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 4,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
acc_model = AutoregressiveWrapper(acc_model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
acc_model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=ACC_MODEL_CHECKPOINT)
acc_model.load_state_dict(torch.load(acc_model_checkpoint, map_location='cpu', weights_only=True))
acc_model = torch.compile(acc_model, mode='max-autotune')
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
print('Loading karaoke words list and dict...')
kar_words_list_dict_pickle = hf_hub_download(repo_id='asigalov61/Karaoke-Transformer', filename='all_words_list_dict.pickle')
with open(kar_words_list_dict_pickle, 'rb') as f:
all_words_list, all_words_dict = pickle.load(f)
print('Done!')
print('=' * 70)
#==================================================================================
@spaces.GPU
def Generate_Karaoke(input_lyrics,
model_temperature,
model_sampling_top_k
):
#===============================================================================
def generate_full_seq(input_seq,
max_toks=3072,
temperature=0.9,
top_k_value=15,
verbose=True
):
seq_abs_run_time = sum([t for t in input_seq if t < 128])
cur_time = 0
full_seq = copy.deepcopy(input_seq)
toks_counter = 0
while cur_time <= seq_abs_run_time+32:
if verbose:
if toks_counter % 128 == 0:
print('Generated', toks_counter, 'tokens')
x = torch.LongTensor(full_seq).cuda()
with ctx:
out = acc_model.generate(x,
1,
filter_logits_fn=top_k,
filter_kwargs={'k': top_k_value},
temperature=temperature,
return_prime=False,
verbose=False
)
y = out.tolist()[0][0]
if y < 128:
cur_time += y
full_seq.append(y)
toks_counter += 1
if toks_counter == max_toks:
return full_seq
return full_seq
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('Requested settings:')
print('=' * 70)
print('Input lyrics:', input_lyrics)
print('=' * 70)
print('Model temperature:', model_temperature)
print('Model top k:', model_sampling_top_k)
print('=' * 70)
#==================================================================
print('=' * 70)
print('Generating...')
#==================================================================
kar_model.to(device_type)
kar_model.eval()
acc_model.to(device_type)
acc_model.eval()
#==================================================================
lyric_toks = [20384]
if input_lyrics != '':
lyrics_clean = TMIDIX.clean_string(input_lyrics.replace('\n', ' '), regex='[^a-zA-Z ]').lower().strip()
syl_toks = [s for s in SyllablesSearch.split_words(lyrics_clean.split(' ')) if s != ' ']
for l in syl_toks:
if l in all_words_list:
lyric_toks.append(all_words_dict[tuple(l)]+384)
lyric_toks.append(20385)
#==================================================================
x = torch.LongTensor(lyric_toks).cuda()
with ctx:
out = kar_model.generate(x,
768,
temperature=model_temperature,
filter_logits_fn=top_k,
filter_kwargs={'k': model_sampling_top_k},
return_prime=False,
eos_token=20386,
verbose=True)
y = out.tolist()
#==================================================================
decoded_lyrics = []
for tok in y[0]:
if 383 < tok < 20384:
decoded_lyrics.append(all_words_list[tok-384])
decoded_lyrics = decoded_lyrics[:MAX_NUM_GEN_WORDS]
print('=' * 70)
print('Done!')
print('=' * 70)
#==================================================================
score = [t for t in y[0] if t < 384][:MAX_NUM_GEN_WORDS*3]
#==================================================================
start_score_seq = [1792] + score + [1793]
#==================================================================
print('Generating accompaniment...')
input_seq = generate_full_seq(start_score_seq,
temperature=model_temperature,
top_k_value=model_sampling_top_k
)
final_song = input_seq[len(start_score_seq):]
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', final_song[:15])
print('=' * 70)
song_f = []
psong_f = []
if len(final_song) != 0:
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patch = 0
channels_map = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 9, 12, 13, 14, 15]
patches_map = [40, 0, 10, 19, 24, 35, 40, 52, 56, 9, 65, 73, 0, 0, 0, 0]
velocities_map = [125, 80, 100, 80, 90, 100, 100, 80, 110, 110, 110, 110, 80, 80, 80, 80]
widx = 0
for m in final_song:
if 0 <= m < 128:
time += m * 32
elif 128 < m < 256:
dur = (m-128) * 32
elif 256 < m < 1792:
cha = (m-256) // 128
pitch = (m-256) % 128
channel = channels_map[cha]
patch = patches_map[channel]
vel = velocities_map[channel]
song_f.append(['note', time, dur, channel, pitch, vel, patch])
psong_f.append(['note', time, dur, channel, pitch, vel, patch])
if cha == 0:
song_f.append(['lyric', time, decoded_lyrics[widx]])
widx += 1
if widx == len(decoded_lyrics):
break
fn1 = "Karaoke-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Karaoke Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches_map
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi = str(new_fn)
output_audio = (16000, audio)
output_lyrics = ' '.join(decoded_lyrics)
output_plot = TMIDIX.plot_ms_SONG(psong_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_audio, output_plot, output_midi, output_lyrics
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Karaoke Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate Karaoke MIDI composition from any lyrics</h1>")
gr.HTML("""
<p>
<a href="https://huggingface.co/spaces/asigalov61/Karaoke-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
gr.Markdown("## Enter desired lyrics below")
input_lyrics = gr.Textbox(label="Input lyrics", value="So close no matter how far\nCould not be much more from the heart\nForever trusting who we are\nAnd nothing else matters")
gr.Markdown("## Generation options")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
model_sampling_top_k = gr.Slider(1, 100, value=5, step=1, label="Model sampling top k value")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Generation results")
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="MIDI score plot")
output_lyrics = gr.Textbox(label="MIDI lyrics")
output_midi = gr.File(label="MIDI file", file_types=[".mid"])
generate_btn.click(Generate_Karaoke,
[input_lyrics,
model_temperature,
model_sampling_top_k
],
[output_audio,
output_plot,
output_midi,
output_lyrics
]
)
#==================================================================================
demo.launch()
#================================================================================== |