Spaces:
Sleeping
Sleeping
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer | |
import torch | |
from PIL import Image | |
# Load model and tokenizer from the Hugging Face repository | |
model_name = "aryan083/vit-gpt2-image-captioning" | |
model = VisionEncoderDecoderModel.from_pretrained(model_name) | |
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device) | |
max_length = 16 | |
num_beams = 4 | |
gen_kwargs = {'max_length': max_length, 'num_beams': num_beams} | |
def predict_step(image_path): | |
image = Image.open(image_path) | |
pixel_values = feature_extractor(images=image, return_tensors='pt').pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate(pixel_values, **gen_kwargs) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return preds[0] | |
# Example usage with your image file | |
image_path = 'jon-parry-C8eSYwQkwHw-unsplash.jpg' | |
print(predict_step(image_path=image_path)) | |