Spaces:
Sleeping
Sleeping
File size: 1,124 Bytes
3bfd95f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
import torch
from PIL import Image
# Load model and tokenizer from the Hugging Face repository
model_name = "aryan083/vit-gpt2-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {'max_length': max_length, 'num_beams': num_beams}
def predict_step(image_path):
image = Image.open(image_path)
pixel_values = feature_extractor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds[0]
# Example usage with your image file
image_path = 'jon-parry-C8eSYwQkwHw-unsplash.jpg'
print(predict_step(image_path=image_path))
|