aryan083 commited on
Commit
3bfd95f
·
verified ·
1 Parent(s): 1f5aaa2

Upload 7 files

Browse files
Files changed (7) hide show
  1. .gitignore +4 -0
  2. README.md +15 -12
  3. app.py +45 -154
  4. final.ipynb +0 -0
  5. gradio_ui.py +15 -0
  6. predict_caption.py +30 -0
  7. requirements.txt +90 -6
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ /vit-gpt2-image-captioning
2
+ /venv
3
+ **/__pycache__
4
+ .qodo
README.md CHANGED
@@ -1,12 +1,15 @@
1
- ---
2
- title: Image Caption
3
- emoji: 🖼
4
- colorFrom: purple
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.0.1
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
1
+
2
+
3
+ # Image Captioning
4
+ Generate a caption/description for your image, simple and straight forward using [Transformers](https://huggingface.co/docs/transformers/index) library.
5
+
6
+ ### How to use
7
+ * Create a Python 3.9 virtual environment
8
+ * Install all the packages from the `requirements.txt` file
9
+ * Download the model and supporting files from [Huggingface](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning/tree/main)
10
+
11
+ ### HuggingFace Model
12
+ * https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
13
+
14
+ ##
15
+ execute the code "python gradio_ui.py"
app.py CHANGED
@@ -1,154 +1,45 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
-
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
2
+ import torch
3
+ from PIL import Image
4
+ import gradio as gr
5
+
6
+ model_name = "aryan083/vit-gpt2-image-captioning"
7
+ model = VisionEncoderDecoderModel.from_pretrained(model_name)
8
+ feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+
11
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
12
+ model.to(device)
13
+
14
+ def predict_caption(image):
15
+ if image is None:
16
+ return None
17
+
18
+ images = []
19
+ images.append(image)
20
+
21
+ pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
22
+ pixel_values = pixel_values.to(device)
23
+
24
+ output_ids = model.generate(
25
+ pixel_values,
26
+ do_sample=True,
27
+ max_length=16,
28
+ num_beams=4,
29
+ temperature=0.7
30
+ )
31
+
32
+ preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
33
+ return preds[0].strip()
34
+
35
+ # Create Gradio interface
36
+ iface = gr.Interface(
37
+ fn=predict_caption,
38
+ inputs=gr.Image(type="pil"),
39
+ outputs=gr.Textbox(label="Generated Caption"),
40
+ title="Image Captioning",
41
+ description="Upload an image and get its description generated using ViT-GPT2",
42
+ # examples=[["assets/example1.jpg"]] # Add example images if you have any
43
+ )
44
+
45
+ iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
final.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
gradio_ui.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from predict_caption import predict_step
4
+
5
+ with gr.Blocks() as demo:
6
+ image = gr.Image(type='pil', label='Image')
7
+ label = gr.Text(label='Generated Caption')
8
+ image.upload(
9
+ predict_step,
10
+ [image],
11
+ [label]
12
+ )
13
+
14
+ if __name__ == '__main__':
15
+ demo.launch()
predict_caption.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
2
+ import torch
3
+ from PIL import Image
4
+
5
+ # Load model and tokenizer from the Hugging Face repository
6
+ model_name = "aryan083/vit-gpt2-image-captioning"
7
+ model = VisionEncoderDecoderModel.from_pretrained(model_name)
8
+ feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+
11
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
12
+ model.to(device)
13
+
14
+ max_length = 16
15
+ num_beams = 4
16
+ gen_kwargs = {'max_length': max_length, 'num_beams': num_beams}
17
+
18
+ def predict_step(image_path):
19
+ image = Image.open(image_path)
20
+ pixel_values = feature_extractor(images=image, return_tensors='pt').pixel_values
21
+ pixel_values = pixel_values.to(device)
22
+
23
+ output_ids = model.generate(pixel_values, **gen_kwargs)
24
+ preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
25
+ preds = [pred.strip() for pred in preds]
26
+ return preds[0]
27
+
28
+ # Example usage with your image file
29
+ image_path = 'jon-parry-C8eSYwQkwHw-unsplash.jpg'
30
+ print(predict_step(image_path=image_path))
requirements.txt CHANGED
@@ -1,6 +1,90 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
- torch
5
- transformers
6
- xformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiofiles==23.1.0
2
+ aiohttp==3.8.4
3
+ aiosignal==1.3.1
4
+ altair==4.2.2
5
+ anyio==3.6.2
6
+ async-timeout==4.0.2
7
+ attrs==23.1.0
8
+ autopep8==2.0.2
9
+ certifi==2022.12.7
10
+ charset-normalizer==3.1.0uuuu
11
+ click==8.1.3
12
+ cmake==3.26.3
13
+ contourpy==1.0.7
14
+ cycler==0.11.0
15
+ entrypoints==0.4
16
+ fastapi==0.95.1
17
+ ffmpy==0.3.0
18
+ filelock==3.12.0
19
+ fonttools==4.39.3
20
+ frozenlist==1.3.3
21
+ fsspec==2023.4.0
22
+ gradio==3.28.0
23
+ gradio_client==0.1.4
24
+ h11==0.14.0
25
+ httpcore==0.17.0
26
+ httpx==0.24.0
27
+ huggingface-hub==0.14.1
28
+ idna==3.4
29
+ importlib-resources==5.12.0
30
+ Jinja2==3.1.2
31
+ jsonschema==4.17.3
32
+ kiwisolver==1.4.4
33
+ linkify-it-py==2.0.0
34
+ lit==16.0.2
35
+ markdown-it-py==2.2.0
36
+ MarkupSafe==2.1.2
37
+ matplotlib==3.7.1
38
+ mdit-py-plugins==0.3.3
39
+ mdurl==0.1.2
40
+ mpmath==1.3.0
41
+ multidict==6.0.4
42
+ networkx==3.1
43
+ numpy==1.24.3
44
+ nvidia-cublas-cu11==11.10.3.66
45
+ nvidia-cuda-cupti-cu11==11.7.101
46
+ nvidia-cuda-nvrtc-cu11==11.7.99
47
+ nvidia-cuda-runtime-cu11==11.7.99
48
+ nvidia-cudnn-cu11==8.5.0.96
49
+ nvidia-cufft-cu11==10.9.0.58
50
+ nvidia-curand-cu11==10.2.10.91
51
+ nvidia-cusolver-cu11==11.4.0.1
52
+ nvidia-cusparse-cu11==11.7.4.91
53
+ nvidia-nccl-cu11==2.14.3
54
+ nvidia-nvtx-cu11==11.7.91
55
+ orjson==3.8.11
56
+ packaging==23.1
57
+ pandas==2.0.1
58
+ Pillow==9.5.0
59
+ pycodestyle==2.10.0
60
+ pydantic==1.10.7
61
+ pydub==0.25.1
62
+ pyparsing==3.0.9
63
+ pyrsistent==0.19.3
64
+ python-dateutil==2.8.2
65
+ python-multipart==0.0.6
66
+ pytz==2023.3
67
+ PyYAML==6.0
68
+ regex==2023.3.23
69
+ requests==2.29.0
70
+ semantic-version==2.10.0
71
+ six==1.16.0
72
+ sniffio==1.3.0
73
+ starlette==0.26.1
74
+ sympy==1.11.1
75
+ tokenizers==0.13.3
76
+ tomli==2.0.1
77
+ toolz==0.12.0
78
+ torch==2.0.0
79
+ torchvision==0.15.1
80
+ tqdm==4.65.0
81
+ transformers==4.28.1
82
+ triton==2.0.0
83
+ typing_extensions==4.5.0
84
+ tzdata==2023.3
85
+ uc-micro-py==1.0.1
86
+ urllib3==1.26.15
87
+ uvicorn==0.22.0
88
+ websockets==11.0.2
89
+ yarl==1.9.2
90
+ zipp==3.15.0