File size: 15,043 Bytes
a66704a
22da260
 
ed6802a
22da260
 
 
 
 
 
 
 
 
 
 
 
 
9772547
22da260
 
 
 
 
 
9772547
22da260
 
 
 
 
9772547
22da260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05d633
22da260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a5a2cb
 
 
851546d
2b9b7c3
51d558f
2b9b7c3
51d558f
851546d
 
a67bb36
c946560
51d558f
851546d
 
 
f01f2ba
dedab40
ad600a9
f01f2ba
 
 
 
 
 
 
 
ad600a9
 
73c8a3e
f01f2ba
ad600a9
f01f2ba
ad600a9
 
 
 
 
 
 
 
 
f01f2ba
 
 
 
ad600a9
f01f2ba
 
ad600a9
 
f01f2ba
ad600a9
f01f2ba
 
 
 
 
 
 
 
 
73c8a3e
ad600a9
f01f2ba
 
 
 
 
 
 
 
 
0e851e5
 
 
 
c9edecf
 
 
 
 
 
 
 
73c8a3e
 
c9edecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c8a3e
 
c9edecf
 
73c8a3e
 
f8e79e0
73c8a3e
c9edecf
 
 
 
 
 
 
 
73c8a3e
c9edecf
 
 
 
 
 
 
 
 
 
 
0e851e5
 
 
 
f8e79e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e851e5
 
 
 
f8e79e0
35ea08a
 
 
 
 
cd29e97
35ea08a
 
 
 
 
 
cd29e97
35ea08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598a87a
35ea08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
851546d
35ea08a
 
 
 
 
0e851e5
 
 
 
35ea08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5543a64
4173329
598a87a
4173329
598a87a
4173329
598a87a
3b5fa8a
35ea08a
 
4173329
35ea08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e851e5
 
 
 
35ea08a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import streamlit as st
import pandas as pd
import numpy as np

st.markdown(f"""
<style>
    /* Set the background image for the entire app */
    .stApp {{
        background-color:rgba(96, 155, 124, 0.5);
        background-size: 1300px;
        background-repeat: no-repeat;
        background-attachment: fixed;
        background-position: center;
    }}
    
    </style>
""", unsafe_allow_html=True)

import streamlit as st

# Navigation
st.title("Life Cycle of ML")
if 'page' not in st.session_state:
    st.session_state['page'] = 'home'

# Main Navigation
if st.session_state['page'] == 'home':
    st.subheader("Explore the Life Cycle Stages")
    if st.button("Data Collection"):
        st.session_state['page'] = 'data_collection'

elif st.session_state['page'] == 'data_collection':
    # Data Collection Page
    st.title("Data Collection")
    st.header("1. What is Data?")
    st.write(
        "Data refers to raw facts and figures that are collected, stored, and analyzed to derive insights. "
        "It serves as the foundation for any machine learning model."
    )
    
    st.header("2. Types of Data")
    data_type = st.radio(
        "Select a type of data to learn more:",
        ("Structured", "Unstructured", "Semi-Structured")
    )
    
    if data_type == "Structured":
        st.subheader("Structured Data")
        st.write(
            "Structured data is highly organized and easily searchable within databases. "
            "It includes rows and columns, such as in relational databases."
        )
        
        st.write("Data Formats:")
        format_selected = st.radio(
            "Select a format to explore further:",
            ("Excel", "CSV")
        )
        
        if format_selected == "Excel":
            # Excel Data Format Section
            st.subheader("Excel Data Format")
            st.write("*What is it?*")
            st.write(
                "Excel files are spreadsheets used to organize and analyze data in rows and columns. "
                "They are widely used due to their user-friendly nature and support for various data types."
            )
            
            st.write("*How to Read Excel Files?*")
            st.code(
                """
import pandas as pd
# Reading an Excel file
df = pd.read_excel('file.xlsx')
print(df.head())
                """,
                language="python"
            )
            
            st.write("*Common Issues When Handling Excel Files*")
            st.write(
                """
- Missing or corrupted files
- Version incompatibilities
- Incorrect file paths
- Handling large Excel files
                """
            )
            
            st.write("*How to Overcome These Errors/Issues?*")
            st.write(
                """
- Use proper error handling with try-except.
- Convert Excel files to CSV for better compatibility.
- Use libraries like openpyxl or xlrd for specific Excel versions.
- Break large files into smaller chunks for processing.
                """
            )
            
            # Button to open Jupyter Notebook or PDF
            if st.button("Open Excel Documentation"):
                st.write("Download the [documentation notebook](path/to/excel_notebook.ipynb) or [PDF](path/to/excel_documentation.pdf).")

        elif format_selected == "CSV":
            # CSV Data Format Section
            st.subheader("CSV Data Format")
            st.write("*What is it?*")
            st.write(
                "CSV (Comma-Separated Values) files store tabular data in plain text, where each line represents a record, "
                "and fields are separated by commas."
            )
            
            st.write("*How to Read CSV Files?*")
            st.code(
                """
import pandas as pd
# Reading a CSV file
df = pd.read_csv('file.csv')
print(df.head())
                """,
                language="python"
            )
            
            st.write("*Common Issues When Handling CSV Files*")
            st.write(
                """
- Encoding issues (e.g., UTF-8, ISO-8859-1)
- Inconsistent delimiters
- Missing or corrupted files
- Large file sizes causing memory errors
                """
            )
            
            st.write("*How to Overcome These Errors/Issues?*")
            st.write(
                """
- Specify the correct encoding when reading files using encoding='utf-8' or similar.
- Use libraries like csv or pandas to handle different delimiters.
- Employ error handling to catch and manage missing/corrupted files.
- Use chunking to read large files in smaller parts: pd.read_csv('file.csv', chunksize=1000).
                """
            )
            
            # Button to open Jupyter Notebook or PDF
            if st.button("Open CSV Documentation"):
                st.write("Download the [documentation notebook](path/to/csv_notebook.ipynb) or [PDF](path/to/csv_documentation.pdf).")



    elif data_type == "Unstructured":
        
        st.subheader("Unstructured Data")
        
        st.write(
            "Unstructured data refers to information that lacks a predefined format or organization, making it challenging to analyze using traditional tools." 
            "Examples include text, images, videos, audio, and social media posts."
        )
        
        st.write("Data Formats:")
        format_selected = st.radio(
            "Select a format to explore further:",
            ("IMAGE","VIDEO", "AUDIO")
        )

        #HOW TO READ TEXT
        if format_selected == "IMAGE":
            
            st.subheader("IMAGE Data Format")
            st.write("*What is it?*")
            st.write(
                "Photos, medical scans, satellite images. "
                )
            
            
            st.write("*How to Read IMAGE Files?*")
            st.code(
                
                """
            
from PIL import Image
image = Image.open('example.jpg')
image.show()
                """,
                 language="python"
                
               
            )




                


            
            
            st.write("*Common Issues When Handling image Files*")
            
            st.write(
                """
- data augumentation and overfitting
- image processing challenges
- Data Imbalance
- High Dimensionality
                """
            )
            
            
            
            st.write("*How to Overcome These Errors/Issues?*")
            st.write(
                """
- Data Augumentaion.
- Consistent image processing
- Handling Class Imbalance.
- Dimensionality Reduction and Feature Extraction
                """
            )
            # Button to open Jupyter Notebook or PDF
            if st.button("Open IMAGE Documentation"):
                st.write("Download the [documentation notebook](path/to/image_notebook.ipynb) or [PDF](path/to/image_documentation.pdf).")


        elif format_selected == "VIDEO":
            
            st.subheader("VIDEO Data Format")
            st.write("*What is it?*")
            st.write(
                "PNG,GIF,BNP,RAW videos,TIFF "
                )
            
            
            st.write("*How to Read VIDEO Files?*")
            st.code(
                
                """
            

pip install opencv-python
import cv2

# Open the video file
video_path = 'path_to_your_video.mp4'
cap = cv2.VideoCapture(video_path)
                """,
                 language="python"
                
               
            )




                


            
            
            st.write("*Common Issues When Handling video Files*")
            
            st.write(
                """
- File not found or Corrupted.
- Incompatible Codec or Format.
- Performance Issues with Large Videos.
- Frame Dropping or Skipping.
                """
            )
            
            
            
            st.write("*How to Overcome These Errors/Issues?*")
            st.write(
                """
-  Ensure Correct File Path and Handle Corrupted Files.
- Install Missing Codecs or Use Supported Formats.
- Optimize Performance for Large Videos
- Control Frame Rate and Prevent Skipping
                """
            )
            # Button to open Jupyter Notebook or PDF
            if st.button("Open VIDEOS Documentation"):
                st.write("Download the [documentation notebook](path/to/videos_notebook.ipynb) or [PDF](path/to/videos_documentation.pdf).")

        elif format_selected == "AUDIO":
            
            st.subheader("AUDIO Data Format")
            st.write("*What is it?*")
            st.write(
                "MP3,WAV,FLAC,AAC,OGG "
                )
            
            
            st.write("*How to Read AUDIO Files?*")
            st.code(
                
                """
            

pip install librosa
import librosa

# Load the audio file
audio_path = 'path_to_audio_file.wav'
y, sr = librosa.load(audio_path, sr=None)  # sr=None to preserve the original sampling rate
                """,
                 language="python"
                
               
            )




                


            
            
            st.write("*Common Issues When Handling audio Files*")
            
            st.write(
                """
- File not found or Corrupted.
- Incompatible Codec or Format.
- Memory Overload or Performance Issues with Large Audios.
-  Encoding or File Corruption Issues
                """
            )
            
            
            
            st.write("*How to Overcome These Errors/Issues?*")
            st.write(
                """
-  File Not Found or Corrupted: Always check if the file exists before attempting to load it. Handle errors gracefully with try-except.
- Incompatible Format or Codec: Use pydub or ffmpeg to handle multiple formats, or convert the file to a more compatible format.
- Memory Overload or Performance Issues: Process the audio in chunks or downsample large files to reduce memory consumption.
- Encoding or File Corruption Issues: Ensure proper encoding and re-encode files using tools like ffmpeg if necessary.
                """
            )
            # Button to open Jupyter Notebook or PDF
            if st.button("Open AUDIO Documentation"):
                st.write("Download the [documentation notebook](path/to/audio_notebook.ipynb) or [PDF](path/to/audio_documentation.pdf).")


    elif data_type == "Semi-Structured":
        
        st.subheader("Semi-structured Data")
        
        st.write(
            "Semi-structured data is data that doesn’t fit into a rigid structure like relational databases but has some organizational properties, such as tags or key-value pairs, making it easier to analyze.")
        
        st.write("Data Formats:")
        format_selected = st.radio(
            "Select a format to explore further:",
            ("JSON","XML")
        )
               
        #HOW TO READ TEXT
        if format_selected == "JSON":
            
            st.subheader("JSON Data Format")
            st.write("*What is it?*")
            st.write(
                "JSON is a lightweight data-interchange format that uses key-value pairs. It is commonly used in web services and APIs for exchanging data. "
                )
            
            
            st.write("*How to Read JSON Files?*")
            st.code(
                
                """
            
import json

# Open and read the JSON file
with open('data.json', 'r') as file:
    data = json.load(file)
                """,
                
                 language="python"
                
               
            )




                


            
            
            st.write("*Common Issues When Handling json Files*")
            
            st.write(
                """
- File Encoding Issues
-  Invalid JSON Syntax
- Large JSON Files Causing Memory Issues
- Inconsistent Data Structure
                """
            )
            
            
            
            st.write("*How to Overcome These Errors/Issues?*")
            st.write(
                """
- Validate JSON Syntax: Use tools like JSONLint or json.decoder.JSONDecodeError in Python to ensure valid JSON format.

- Handle Encoding: Specify the encoding when opening the file in Python (e.g., open('file.json', 'r', encoding='utf-8')).

- Use Chunking or Streaming for Large Files: For large JSON files, load the file in chunks or use libraries that support JSON streaming like ijson or jsonlines.

- Consistent Structure: Ensure consistent data structure when creating JSON files, or write code to handle missing or extra fields gracefully.
                """
            )
            # Button to open Jupyter Notebook or PDF
            if st.button("Open JSON Documentation"):
                st.write("Download the [documentation notebook](path/to/JSON_notebook.ipynb) or [PDF](path/to/JSON_documentation.pdf).")


        elif format_selected == "XML":
            
            st.subheader("XML Data Format")
            st.write("*What is it?*")
            st.write(
                "XML is a flexible, structured data format used to store and transport data, utilizing tags to define elements, attributes, and hierarchical relationships between different pieces of information. "
                )
            
            
            st.write("*How to Read XML Files?*")
            st.code(
                
                """
            
import pandas as pd
pd.read_xml("Data_path")
                """ ,
                
                 language="python"
                
            )    
                
                
                
               
            




                


            
            
            st.write("*Common Issues When Handling XML Files*")
            
            st.write(
                """
-  Invalid XML Syntax.
- Encoding Issues.
-  Large XML Files.
- Inconsistent Structure.
                """
            )
            
            
            
            st.write("*How to Overcome These Errors/Issues?*")
            st.write(
                """
-  Validate XML Syntax: Use XML validators and try-except blocks to catch and fix syntax errors during parsing.
- Handle Encoding Issues: Specify the encoding when reading files and use libraries like chardet to detect encoding automatically.
- Process Large Files Efficiently: Use streaming parsers (e.g., iterparse()) and iterative parsing to handle large files without consuming too much memory.
- Ensure Consistent Structure: Check for missing elements before accessing them and handle inconsistencies with default values or conditional logic.



                """
            )
            # Button to open Jupyter Notebook or PDF
            if st.button("Open XML Documentation"):
                st.write("Download the [documentation notebook](path/to/XML_notebook.ipynb) or [PDF](path/to/XML_documentation.pdf).")