Spaces:
Sleeping
Sleeping
Update pages/Lifecycle of Machine Learning.py
Browse files
pages/Lifecycle of Machine Learning.py
CHANGED
@@ -1,54 +1,146 @@
|
|
1 |
-
pip install streamlit
|
2 |
import streamlit as st
|
3 |
-
|
4 |
-
|
5 |
-
from sklearn.ensemble import RandomForestClassifier
|
6 |
-
from sklearn.metrics import accuracy_score
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
if st.button("1. Data Collection"):
|
13 |
-
st.header("Data Collection")
|
14 |
-
st.write("Using Iris dataset for demonstration.")
|
15 |
-
data = load_iris(as_frame=True)
|
16 |
-
st.write(data.frame.head())
|
17 |
-
|
18 |
-
elif st.button("2. Data Preprocessing"):
|
19 |
-
st.header("Data Preprocessing")
|
20 |
-
st.write("Splitting the data into train and test sets.")
|
21 |
-
data = load_iris(as_frame=True)
|
22 |
-
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
|
23 |
-
st.write(f"Train size: {len(X_train)}; Test size: {len(X_test)}")
|
24 |
-
|
25 |
-
elif st.button("3. Model Training"):
|
26 |
-
st.header("Model Training")
|
27 |
-
st.write("Training a Random Forest Classifier.")
|
28 |
-
data = load_iris(as_frame=True)
|
29 |
-
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
|
30 |
-
model = RandomForestClassifier()
|
31 |
-
model.fit(X_train, y_train)
|
32 |
-
st.write("Model trained successfully.")
|
33 |
-
|
34 |
-
elif st.button("4. Model Evaluation"):
|
35 |
-
st.header("Model Evaluation")
|
36 |
-
st.write("Evaluating the model on the test data.")
|
37 |
-
data = load_iris(as_frame=True)
|
38 |
-
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
|
39 |
-
model = RandomForestClassifier()
|
40 |
-
model.fit(X_train, y_train)
|
41 |
-
predictions = model.predict(X_test)
|
42 |
-
accuracy = accuracy_score(y_test, predictions)
|
43 |
-
st.write(f"Accuracy: {accuracy:.2f}")
|
44 |
-
|
45 |
-
elif st.button("5. Model Deployment"):
|
46 |
-
st.header("Model Deployment")
|
47 |
-
st.write("This step involves deploying the model for usage.")
|
48 |
-
st.write("You can expose the model via APIs or integrate it into an application.")
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
|
|
|
|
4 |
|
5 |
+
st.markdown(f"""
|
6 |
+
<style>
|
7 |
+
/* Set the background image for the entire app */
|
8 |
+
.stApp {{
|
9 |
+
background-color:rgba(96, 155, 124, 0.5);
|
10 |
+
background-size: 1300px;
|
11 |
+
background-repeat: no-repeat;
|
12 |
+
background-attachment: fixed;
|
13 |
+
background-position: center;
|
14 |
+
}}
|
15 |
+
|
16 |
+
</style>
|
17 |
+
""", unsafe_allow_html=True)
|
18 |
|
19 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Navigation
|
22 |
+
st.title("Life Cycle of ML")
|
23 |
+
if 'page' not in st.session_state:
|
24 |
+
st.session_state['page'] = 'home'
|
25 |
|
26 |
+
# Main Navigation
|
27 |
+
if st.session_state['page'] == 'home':
|
28 |
+
st.subheader("Explore the Life Cycle Stages")
|
29 |
+
if st.button("Data Collection"):
|
30 |
+
st.session_state['page'] = 'data_collection'
|
31 |
|
32 |
+
elif st.session_state['page'] == 'data_collection':
|
33 |
+
# Data Collection Page
|
34 |
+
st.title("Data Collection")
|
35 |
+
st.header("1. What is Data?")
|
36 |
+
st.write(
|
37 |
+
"Data refers to raw facts and figures that are collected, stored, and analyzed to derive insights. "
|
38 |
+
"It serves as the foundation for any machine learning model."
|
39 |
+
)
|
40 |
+
|
41 |
+
st.header("2. Types of Data")
|
42 |
+
data_type = st.radio(
|
43 |
+
"Select a type of data to learn more:",
|
44 |
+
("Structured", "Unstructured", "Semi-Structured")
|
45 |
+
)
|
46 |
+
|
47 |
+
if data_type == "Structured":
|
48 |
+
st.subheader("Structured Data")
|
49 |
+
st.write(
|
50 |
+
"Structured data is highly organized and easily searchable within databases. "
|
51 |
+
"It includes rows and columns, such as in relational databases."
|
52 |
+
)
|
53 |
+
|
54 |
+
st.write("Data Formats:")
|
55 |
+
format_selected = st.radio(
|
56 |
+
"Select a format to explore further:",
|
57 |
+
("Excel", "CSV")
|
58 |
+
)
|
59 |
+
|
60 |
+
if format_selected == "Excel":
|
61 |
+
# Excel Data Format Section
|
62 |
+
st.subheader("Excel Data Format")
|
63 |
+
st.write("*What is it?*")
|
64 |
+
st.write(
|
65 |
+
"Excel files are spreadsheets used to organize and analyze data in rows and columns. "
|
66 |
+
"They are widely used due to their user-friendly nature and support for various data types."
|
67 |
+
)
|
68 |
+
|
69 |
+
st.write("*How to Read Excel Files?*")
|
70 |
+
st.code(
|
71 |
+
"""
|
72 |
+
import pandas as pd
|
73 |
+
# Reading an Excel file
|
74 |
+
df = pd.read_excel('file.xlsx')
|
75 |
+
print(df.head())
|
76 |
+
""",
|
77 |
+
language="python"
|
78 |
+
)
|
79 |
+
|
80 |
+
st.write("*Common Issues When Handling Excel Files*")
|
81 |
+
st.write(
|
82 |
+
"""
|
83 |
+
- Missing or corrupted files
|
84 |
+
- Version incompatibilities
|
85 |
+
- Incorrect file paths
|
86 |
+
- Handling large Excel files
|
87 |
+
"""
|
88 |
+
)
|
89 |
+
|
90 |
+
st.write("*How to Overcome These Errors/Issues?*")
|
91 |
+
st.write(
|
92 |
+
"""
|
93 |
+
- Use proper error handling with try-except.
|
94 |
+
- Convert Excel files to CSV for better compatibility.
|
95 |
+
- Use libraries like openpyxl or xlrd for specific Excel versions.
|
96 |
+
- Break large files into smaller chunks for processing.
|
97 |
+
"""
|
98 |
+
)
|
99 |
+
|
100 |
+
# Button to open Jupyter Notebook or PDF
|
101 |
+
if st.button("Open Excel Documentation"):
|
102 |
+
st.write("Download the [documentation notebook](path/to/excel_notebook.ipynb) or [PDF](path/to/excel_documentation.pdf).")
|
103 |
|
104 |
+
elif format_selected == "CSV":
|
105 |
+
# CSV Data Format Section
|
106 |
+
st.subheader("CSV Data Format")
|
107 |
+
st.write("*What is it?*")
|
108 |
+
st.write(
|
109 |
+
"CSV (Comma-Separated Values) files store tabular data in plain text, where each line represents a record, "
|
110 |
+
"and fields are separated by commas."
|
111 |
+
)
|
112 |
+
|
113 |
+
st.write("*How to Read CSV Files?*")
|
114 |
+
st.code(
|
115 |
+
"""
|
116 |
+
import pandas as pd
|
117 |
+
# Reading a CSV file
|
118 |
+
df = pd.read_csv('file.csv')
|
119 |
+
print(df.head())
|
120 |
+
""",
|
121 |
+
language="python"
|
122 |
+
)
|
123 |
+
|
124 |
+
st.write("*Common Issues When Handling CSV Files*")
|
125 |
+
st.write(
|
126 |
+
"""
|
127 |
+
- Encoding issues (e.g., UTF-8, ISO-8859-1)
|
128 |
+
- Inconsistent delimiters
|
129 |
+
- Missing or corrupted files
|
130 |
+
- Large file sizes causing memory errors
|
131 |
+
"""
|
132 |
+
)
|
133 |
+
|
134 |
+
st.write("*How to Overcome These Errors/Issues?*")
|
135 |
+
st.write(
|
136 |
+
"""
|
137 |
+
- Specify the correct encoding when reading files using encoding='utf-8' or similar.
|
138 |
+
- Use libraries like csv or pandas to handle different delimiters.
|
139 |
+
- Employ error handling to catch and manage missing/corrupted files.
|
140 |
+
- Use chunking to read large files in smaller parts: pd.read_csv('file.csv', chunksize=1000).
|
141 |
+
"""
|
142 |
+
)
|
143 |
+
|
144 |
+
# Button to open Jupyter Notebook or PDF
|
145 |
+
if st.button("Open CSV Documentation"):
|
146 |
+
st.write("Download the [documentation notebook](path/to/csv_notebook.ipynb) or [PDF](path/to/csv_documentation.pdf).")
|