ankithpatel commited on
Commit
9772547
·
verified ·
1 Parent(s): ec49f78

Update pages/Lifecycle of Machine Learning.py

Browse files
pages/Lifecycle of Machine Learning.py CHANGED
@@ -1,46 +1,54 @@
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- # HTML and CSS code for a simple mind map
4
- html_code = """
5
- <div style="display: flex; justify-content: center; margin-top: 20px;">
6
- <div style="text-align: center;">
7
- <!-- Root Node -->
8
- <div style="background-color: #4CAF50; color: white; padding: 10px 20px; border-radius: 10px; margin-bottom: 20px;">
9
- Data Science
10
- </div>
11
- <div style="display: flex; justify-content: space-around;">
12
- <!-- First Branch -->
13
- <div style="text-align: center; margin-right: 50px;">
14
- <div style="background-color: #f44336; color: white; padding: 10px 20px; border-radius: 10px;">
15
- Machine Learning
16
- </div>
17
- <div style="margin-top: 20px;">
18
- <div style="background-color: #e91e63; color: white; padding: 10px 20px; border-radius: 10px; margin-top: 10px;">
19
- Supervised
20
- </div>
21
- <div style="background-color: #e91e63; color: white; padding: 10px 20px; border-radius: 10px; margin-top: 10px;">
22
- Unsupervised
23
- </div>
24
- </div>
25
- </div>
26
- <!-- Second Branch -->
27
- <div style="text-align: center; margin-left: 50px;">
28
- <div style="background-color: #2196F3; color: white; padding: 10px 20px; border-radius: 10px;">
29
- Deep Learning
30
- </div>
31
- <div style="margin-top: 20px;">
32
- <div style="background-color: #03A9F4; color: white; padding: 10px 20px; border-radius: 10px; margin-top: 10px;">
33
- CNN
34
- </div>
35
- <div style="background-color: #03A9F4; color: white; padding: 10px 20px; border-radius: 10px; margin-top: 10px;">
36
- RNN
37
- </div>
38
- </div>
39
- </div>
40
- </div>
41
- </div>
42
- </div>
43
- """
44
-
45
- # Display the mind map in Streamlit
46
- st.markdown(html_code, unsafe_allow_html=True)
 
1
  import streamlit as st
2
+ from sklearn.datasets import load_iris
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.ensemble import RandomForestClassifier
5
+ from sklearn.metrics import accuracy_score
6
+
7
+ # Page Title
8
+ st.title("Machine Learning Life Cycle in Streamlit")
9
+
10
+ # Buttons for each stage
11
+ if st.button("1. Data Collection"):
12
+ st.header("Data Collection")
13
+ st.write("Using Iris dataset for demonstration.")
14
+ data = load_iris(as_frame=True)
15
+ st.write(data.frame.head())
16
+
17
+ elif st.button("2. Data Preprocessing"):
18
+ st.header("Data Preprocessing")
19
+ st.write("Splitting the data into train and test sets.")
20
+ data = load_iris(as_frame=True)
21
+ X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
22
+ st.write(f"Train size: {len(X_train)}; Test size: {len(X_test)}")
23
+
24
+ elif st.button("3. Model Training"):
25
+ st.header("Model Training")
26
+ st.write("Training a Random Forest Classifier.")
27
+ data = load_iris(as_frame=True)
28
+ X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
29
+ model = RandomForestClassifier()
30
+ model.fit(X_train, y_train)
31
+ st.write("Model trained successfully.")
32
+
33
+ elif st.button("4. Model Evaluation"):
34
+ st.header("Model Evaluation")
35
+ st.write("Evaluating the model on the test data.")
36
+ data = load_iris(as_frame=True)
37
+ X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
38
+ model = RandomForestClassifier()
39
+ model.fit(X_train, y_train)
40
+ predictions = model.predict(X_test)
41
+ accuracy = accuracy_score(y_test, predictions)
42
+ st.write(f"Accuracy: {accuracy:.2f}")
43
+
44
+ elif st.button("5. Model Deployment"):
45
+ st.header("Model Deployment")
46
+ st.write("This step involves deploying the model for usage.")
47
+ st.write("You can expose the model via APIs or integrate it into an application.")
48
+
49
+ else:
50
+ st.write("Use the buttons above to navigate through the Machine Learning life cycle.")
51
+
52
+
53
+ streamlit run ml_lifecycle.py
54