Spaces:
Sleeping
Sleeping
File size: 8,018 Bytes
a66704a 22da260 ed6802a 22da260 9772547 22da260 9772547 22da260 9772547 22da260 b05d633 22da260 8a5a2cb 851546d 2b9b7c3 51d558f 2b9b7c3 51d558f 851546d a67bb36 c946560 51d558f 851546d f01f2ba dedab40 ad600a9 f01f2ba ad600a9 73c8a3e f01f2ba ad600a9 f01f2ba ad600a9 f01f2ba ad600a9 f01f2ba ad600a9 f01f2ba ad600a9 f01f2ba 73c8a3e ad600a9 f01f2ba c9edecf 73c8a3e c9edecf 73c8a3e c9edecf 73c8a3e c9edecf 73c8a3e c9edecf 73c8a3e c9edecf 851546d ad600a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import streamlit as st
import pandas as pd
import numpy as np
st.markdown(f"""
<style>
/* Set the background image for the entire app */
.stApp {{
background-color:rgba(96, 155, 124, 0.5);
background-size: 1300px;
background-repeat: no-repeat;
background-attachment: fixed;
background-position: center;
}}
</style>
""", unsafe_allow_html=True)
import streamlit as st
# Navigation
st.title("Life Cycle of ML")
if 'page' not in st.session_state:
st.session_state['page'] = 'home'
# Main Navigation
if st.session_state['page'] == 'home':
st.subheader("Explore the Life Cycle Stages")
if st.button("Data Collection"):
st.session_state['page'] = 'data_collection'
elif st.session_state['page'] == 'data_collection':
# Data Collection Page
st.title("Data Collection")
st.header("1. What is Data?")
st.write(
"Data refers to raw facts and figures that are collected, stored, and analyzed to derive insights. "
"It serves as the foundation for any machine learning model."
)
st.header("2. Types of Data")
data_type = st.radio(
"Select a type of data to learn more:",
("Structured", "Unstructured", "Semi-Structured")
)
if data_type == "Structured":
st.subheader("Structured Data")
st.write(
"Structured data is highly organized and easily searchable within databases. "
"It includes rows and columns, such as in relational databases."
)
st.write("Data Formats:")
format_selected = st.radio(
"Select a format to explore further:",
("Excel", "CSV")
)
if format_selected == "Excel":
# Excel Data Format Section
st.subheader("Excel Data Format")
st.write("*What is it?*")
st.write(
"Excel files are spreadsheets used to organize and analyze data in rows and columns. "
"They are widely used due to their user-friendly nature and support for various data types."
)
st.write("*How to Read Excel Files?*")
st.code(
"""
import pandas as pd
# Reading an Excel file
df = pd.read_excel('file.xlsx')
print(df.head())
""",
language="python"
)
st.write("*Common Issues When Handling Excel Files*")
st.write(
"""
- Missing or corrupted files
- Version incompatibilities
- Incorrect file paths
- Handling large Excel files
"""
)
st.write("*How to Overcome These Errors/Issues?*")
st.write(
"""
- Use proper error handling with try-except.
- Convert Excel files to CSV for better compatibility.
- Use libraries like openpyxl or xlrd for specific Excel versions.
- Break large files into smaller chunks for processing.
"""
)
# Button to open Jupyter Notebook or PDF
if st.button("Open Excel Documentation"):
st.write("Download the [documentation notebook](path/to/excel_notebook.ipynb) or [PDF](path/to/excel_documentation.pdf).")
elif format_selected == "CSV":
# CSV Data Format Section
st.subheader("CSV Data Format")
st.write("*What is it?*")
st.write(
"CSV (Comma-Separated Values) files store tabular data in plain text, where each line represents a record, "
"and fields are separated by commas."
)
st.write("*How to Read CSV Files?*")
st.code(
"""
import pandas as pd
# Reading a CSV file
df = pd.read_csv('file.csv')
print(df.head())
""",
language="python"
)
st.write("*Common Issues When Handling CSV Files*")
st.write(
"""
- Encoding issues (e.g., UTF-8, ISO-8859-1)
- Inconsistent delimiters
- Missing or corrupted files
- Large file sizes causing memory errors
"""
)
st.write("*How to Overcome These Errors/Issues?*")
st.write(
"""
- Specify the correct encoding when reading files using encoding='utf-8' or similar.
- Use libraries like csv or pandas to handle different delimiters.
- Employ error handling to catch and manage missing/corrupted files.
- Use chunking to read large files in smaller parts: pd.read_csv('file.csv', chunksize=1000).
"""
)
# Button to open Jupyter Notebook or PDF
if st.button("Open CSV Documentation"):
st.write("Download the [documentation notebook](path/to/csv_notebook.ipynb) or [PDF](path/to/csv_documentation.pdf).")
elif data_type == "Unstructured":
st.subheader("Unstructured Data")
st.write(
"Unstructured data refers to information that lacks a predefined format or organization, making it challenging to analyze using traditional tools."
"Examples include text, images, videos, audio, and social media posts."
)
st.write("Data Formats:")
format_selected = st.radio(
"Select a format to explore further:",
("IMAGE","VIDEO", "AUDIO")
)
#HOW TO READ TEXT
if format_selected == "IMAGE":
st.subheader("IMAGE Data Format")
st.write("*What is it?*")
st.write(
"Photos, medical scans, satellite images. "
)
st.write("*How to Read IMAGE Files?*")
st.code(
"""
from PIL import Image
image = Image.open('example.jpg')
image.show()
""",
language="python"
)
st.write("*Common Issues When Handling image Files*")
st.write(
"""
- data augumentation and overfitting
- image processing challenges
- Data Imbalance
- High Dimensionality
"""
)
st.write("*How to Overcome These Errors/Issues?*")
st.write(
"""
- Data Augumentaion.
- Consistent image processing
- Handling Class Imbalance.
- Dimensionality Reduction and Feature Extraction
"""
)
elif format_selected == "VIDEO":
st.subheader("VIDEO Data Format")
st.write("*What is it?*")
st.write(
"PNG,GIF,BNP,RAW videos,TIFF "
)
st.write("*How to Read VIDEO Files?*")
st.code(
"""
pip install opencv-python
import cv2
# Open the video file
video_path = 'path_to_your_video.mp4'
cap = cv2.VideoCapture(video_path)
""",
language="python"
)
st.write("*Common Issues When Handling vdeo Files*")
st.write(
"""
- File not found or Corrupted.
- Incompatible Codec or Format.
- Performance Issues with Large Videos.
- Frame Dropping or Skipping.
"""
)
st.write("*How to Overcome These Errors/Issues?*")
st.write(
"""
- Ensure Correct File Path and Handle Corrupted Files.
- Install Missing Codecs or Use Supported Formats.
- Optimize Performance for Large Videos
- Control Frame Rate and Prevent Skipping
"""
)
|