tempo_control2 / talk_arena /streaming_helpers.py
Ali Sartaz Khan
Add application file
3c8c320
raw
history blame contribute delete
13.2 kB
import asyncio
import base64
import json
import os
from collections import defaultdict
from pathlib import Path
import google.generativeai as genai
import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import torch
import xxhash
from datasets import Audio
from openai import AsyncOpenAI
from transformers import AutoModel, AutoProcessor, Qwen2AudioForConditionalGeneration, TextIteratorStreamer
from transformers.generation import GenerationConfig
def _get_prompt_for_model_name(model_id):
prompt_dict = defaultdict(lambda: "You are a helpful assistant. Respond conversationally to the speech provided.")
# Requested Overrides
prompt_dict["scb10x/llama-3-typhoon-audio-8b-2411"] = (
"You are a helpful assistant. Respond conversationally to the speech provided in the language it is spoken in."
)
return prompt_dict[model_id]
def _get_config_for_model_name(model_id):
if "API_MODEL_CONFIG" in os.environ:
return json.loads(os.environ["API_MODEL_CONFIG"])[model_id]
return {
"pipeline/meta-llama/Meta-Llama-3-8B-Instruct": {"base_url": "http://localhost:8001/v1", "api_key": "empty"},
"scb10x/llama-3-typhoon-audio-8b-2411": {
"base_url": "http://localhost:8002/v1",
"api_key": "empty",
},
"WillHeld/DiVA-llama-3-v0-8b": {
"base_url": "http://localhost:8003/v1",
"api_key": "empty",
},
"Qwen/Qwen2-Audio-7B-Instruct": {
"base_url": "http://localhost:8004/v1",
"api_key": "empty",
},
}[model_id]
def gradio_gen_factory(streaming_fn, model_name, anonymous):
async def gen_from(audio_input, order):
with torch.no_grad():
prev_resp = ""
async for resp in streaming_fn(audio_input):
for char in range(len(prev_resp), len(resp)):
my_resp = gr.Textbox(
value=resp[: char + 1],
info="",
visible=True,
label=model_name if not anonymous else f"Model {order+1}",
elem_classes="lam-response-box",
)
yield my_resp
await asyncio.sleep(0.001)
prev_resp = resp
return gen_from
def gemini_streaming(model_id):
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
resampler = Audio(sampling_rate=16_000)
model = genai.GenerativeModel(model_id)
async def get_chat_response(audio_input):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
prompt = "You are a helpful assistant. Respond conversationally to the speech provided."
inputs = [prompt, {"mime_type": "audio/wav", "data": Path(f"{x}.wav").read_bytes()}]
text_response = []
responses = model.generate_content(inputs, stream=True)
for chunk in responses:
text_response.append(chunk.text)
yield "".join(text_response)
os.remove(f"{x}.wav")
return get_chat_response, model
def gpt4o_streaming(model_id):
client = AsyncOpenAI(api_key=os.environ["OPENAI_API_KEY"])
resampler = Audio(sampling_rate=16_000)
async def get_chat_response(audio_input):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
with open(f"{x}.wav", "rb") as wav_file:
wav_data = wav_file.read()
encoded_string = base64.b64encode(wav_data).decode("utf-8")
prompt = "You are a helpful assistant. Respond conversationally to the speech provided."
try:
completion = await client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": "alloy", "format": "wav"},
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "input_audio", "input_audio": {"data": encoded_string, "format": "wav"}},
],
},
],
)
os.remove(f"{x}.wav")
yield completion.choices[0].message.audio.transcript
except:
raise StopAsyncIteration("error")
return get_chat_response, client
async def llm_streaming(model_id: str, prompt: str):
if "gpt" in model_id:
client = AsyncOpenAI()
else:
client = AsyncOpenAI(**_get_config_for_model_name(model_id))
try:
completion = await client.chat.completions.create(
model=model_id,
messages=[
{"role": "system", "content": "You are helpful assistant."},
{
"role": "user",
"content": prompt,
},
],
stream=True,
)
text_response = []
async for chunk in completion:
if len(chunk.choices) > 0:
text_response.append(chunk.choices[0].delta.content)
yield "".join(text_response)
except:
raise StopAsyncIteration("error")
def asr_streaming(model_id, asr_pipe):
resampler = Audio(sampling_rate=16_000)
async def pipelined(audio_input):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
text = await asyncio.to_thread(
asr_pipe(f"{x}.wav", generate_kwargs={"task": "transcribe"}, return_timestamps=False)["text"]
)
os.remove(f"{x}.wav")
async for response in llm_streaming(model_id, prompt=text):
yield response
return pipelined
def api_streaming(model_id):
client = AsyncOpenAI(**_get_config_for_model_name(model_id))
resampler = Audio(sampling_rate=16_000)
async def get_chat_response(audio_input):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
with open(f"{x}.wav", "rb") as wav_file:
wav_data = wav_file.read()
encoded_string = base64.b64encode(wav_data).decode("utf-8")
try:
prompt = _get_prompt_for_model_name(model_id)
completion = await client.chat.completions.create(
model=model_id,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "audio", "audio_url": "data:audio/wav;base64," + encoded_string},
],
},
],
stream=True,
)
text_response = []
async for chunk in completion:
if len(chunk.choices) > 0:
text_response.append(chunk.choices[0].delta.content)
yield "".join(text_response)
os.remove(f"{x}.wav")
except:
print(f"error for {model_id}")
raise StopAsyncIteration(f"error for {model_id}")
return get_chat_response, client
# Local Hosting Utilities
def diva_streaming(diva_model_str):
diva_model = AutoModel.from_pretrained(diva_model_str, trust_remote_code=True, device_map="balanced_low_0")
resampler = Audio(sampling_rate=16_000)
async def diva_audio(audio_input, do_sample=False, temperature=0.001):
sr, y = audio_input
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
stream = diva_model.generate_stream(
a["array"],
(
"You are a helpful assistant The user is talking to you with their voice and you are responding with"
" text."
),
do_sample=do_sample,
max_new_tokens=256,
)
for text in stream:
yield text
return diva_audio, diva_model
def qwen2_streaming(qwen2_model_str):
resampler = Audio(sampling_rate=16_000)
qwen2_processor = AutoProcessor.from_pretrained(qwen2_model_str)
qwen2_model = Qwen2AudioForConditionalGeneration.from_pretrained(qwen2_model_str, device_map="auto")
qwen2_model.generation_config = GenerationConfig.from_pretrained(
qwen2_model_str,
trust_remote_code=True,
do_sample=False,
top_k=50,
top_p=1.0,
)
async def qwen2_audio(audio_input, do_sample=False, temperature=0.001):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
conversation = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": [
{
"type": "audio",
"audio_url": f"{x}.wav",
},
],
},
]
text = qwen2_processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = [librosa.load(f"{x}.wav", sr=qwen2_processor.feature_extractor.sampling_rate)[0]]
inputs = qwen2_processor(text=text, audios=audios, return_tensors="pt", padding=True)
streamer = TextIteratorStreamer(qwen2_processor)
generation_task = asyncio.create_task(qwen2_model.generate(**inputs, streamer=streamer, max_length=256))
generated_text = ""
async for new_text in streamer:
generated_text += new_text
yield generated_text.split("<|im_start|>assistant\n")[-1].replace("<|im_end|>", "")
await generation_task
os.remove(f"{x}.wav")
return qwen2_audio, qwen2_model
def typhoon_streaming(typhoon_model_str, device="cuda:0"):
resampler = Audio(sampling_rate=16_000)
typhoon_model = AutoModel.from_pretrained(typhoon_model_str, torch_dtype=torch.float16, trust_remote_code=True)
tokenizer = typhoon_model.llama_tokenizer
typhoon_model.to(device)
typhoon_model.eval()
prompt_pattern = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n<Speech><SpeechHere></Speech>"
" {}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
)
prompt = (
"You are a helpful assistant. Respond conversationally to the speech provided in the language it is spoken in."
)
async def typhoon_audio(audio_input, do_sample=False, temperature=0.001):
if audio_input == None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
streamer = TextIteratorStreamer(tokenizer)
generation_task = asyncio.create_task(
typhoon_model.generate(
audio=a["array"],
prompt=prompt,
prompt_pattern=prompt_pattern,
device=device,
do_sample=False,
max_length=1200,
num_beams=1,
streamer=streamer, # supports TextIteratorStreamer
)
)
generated_text = ""
async for new_text in streamer:
generated_text += new_text
yield generated_text.split("<|start_header_id|>assistant<|end_header_id|>\n\n")[-1].replace(
"<|eot_id|>", ""
)
await generation_task
return typhoon_audio, typhoon_model