Spaces:
Sleeping
Sleeping
File size: 13,194 Bytes
3c8c320 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import asyncio
import base64
import json
import os
from collections import defaultdict
from pathlib import Path
import google.generativeai as genai
import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import torch
import xxhash
from datasets import Audio
from openai import AsyncOpenAI
from transformers import AutoModel, AutoProcessor, Qwen2AudioForConditionalGeneration, TextIteratorStreamer
from transformers.generation import GenerationConfig
def _get_prompt_for_model_name(model_id):
prompt_dict = defaultdict(lambda: "You are a helpful assistant. Respond conversationally to the speech provided.")
# Requested Overrides
prompt_dict["scb10x/llama-3-typhoon-audio-8b-2411"] = (
"You are a helpful assistant. Respond conversationally to the speech provided in the language it is spoken in."
)
return prompt_dict[model_id]
def _get_config_for_model_name(model_id):
if "API_MODEL_CONFIG" in os.environ:
return json.loads(os.environ["API_MODEL_CONFIG"])[model_id]
return {
"pipeline/meta-llama/Meta-Llama-3-8B-Instruct": {"base_url": "http://localhost:8001/v1", "api_key": "empty"},
"scb10x/llama-3-typhoon-audio-8b-2411": {
"base_url": "http://localhost:8002/v1",
"api_key": "empty",
},
"WillHeld/DiVA-llama-3-v0-8b": {
"base_url": "http://localhost:8003/v1",
"api_key": "empty",
},
"Qwen/Qwen2-Audio-7B-Instruct": {
"base_url": "http://localhost:8004/v1",
"api_key": "empty",
},
}[model_id]
def gradio_gen_factory(streaming_fn, model_name, anonymous):
async def gen_from(audio_input, order):
with torch.no_grad():
prev_resp = ""
async for resp in streaming_fn(audio_input):
for char in range(len(prev_resp), len(resp)):
my_resp = gr.Textbox(
value=resp[: char + 1],
info="",
visible=True,
label=model_name if not anonymous else f"Model {order+1}",
elem_classes="lam-response-box",
)
yield my_resp
await asyncio.sleep(0.001)
prev_resp = resp
return gen_from
def gemini_streaming(model_id):
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
resampler = Audio(sampling_rate=16_000)
model = genai.GenerativeModel(model_id)
async def get_chat_response(audio_input):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
prompt = "You are a helpful assistant. Respond conversationally to the speech provided."
inputs = [prompt, {"mime_type": "audio/wav", "data": Path(f"{x}.wav").read_bytes()}]
text_response = []
responses = model.generate_content(inputs, stream=True)
for chunk in responses:
text_response.append(chunk.text)
yield "".join(text_response)
os.remove(f"{x}.wav")
return get_chat_response, model
def gpt4o_streaming(model_id):
client = AsyncOpenAI(api_key=os.environ["OPENAI_API_KEY"])
resampler = Audio(sampling_rate=16_000)
async def get_chat_response(audio_input):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
with open(f"{x}.wav", "rb") as wav_file:
wav_data = wav_file.read()
encoded_string = base64.b64encode(wav_data).decode("utf-8")
prompt = "You are a helpful assistant. Respond conversationally to the speech provided."
try:
completion = await client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": "alloy", "format": "wav"},
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "input_audio", "input_audio": {"data": encoded_string, "format": "wav"}},
],
},
],
)
os.remove(f"{x}.wav")
yield completion.choices[0].message.audio.transcript
except:
raise StopAsyncIteration("error")
return get_chat_response, client
async def llm_streaming(model_id: str, prompt: str):
if "gpt" in model_id:
client = AsyncOpenAI()
else:
client = AsyncOpenAI(**_get_config_for_model_name(model_id))
try:
completion = await client.chat.completions.create(
model=model_id,
messages=[
{"role": "system", "content": "You are helpful assistant."},
{
"role": "user",
"content": prompt,
},
],
stream=True,
)
text_response = []
async for chunk in completion:
if len(chunk.choices) > 0:
text_response.append(chunk.choices[0].delta.content)
yield "".join(text_response)
except:
raise StopAsyncIteration("error")
def asr_streaming(model_id, asr_pipe):
resampler = Audio(sampling_rate=16_000)
async def pipelined(audio_input):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
text = await asyncio.to_thread(
asr_pipe(f"{x}.wav", generate_kwargs={"task": "transcribe"}, return_timestamps=False)["text"]
)
os.remove(f"{x}.wav")
async for response in llm_streaming(model_id, prompt=text):
yield response
return pipelined
def api_streaming(model_id):
client = AsyncOpenAI(**_get_config_for_model_name(model_id))
resampler = Audio(sampling_rate=16_000)
async def get_chat_response(audio_input):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
with open(f"{x}.wav", "rb") as wav_file:
wav_data = wav_file.read()
encoded_string = base64.b64encode(wav_data).decode("utf-8")
try:
prompt = _get_prompt_for_model_name(model_id)
completion = await client.chat.completions.create(
model=model_id,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "audio", "audio_url": "data:audio/wav;base64," + encoded_string},
],
},
],
stream=True,
)
text_response = []
async for chunk in completion:
if len(chunk.choices) > 0:
text_response.append(chunk.choices[0].delta.content)
yield "".join(text_response)
os.remove(f"{x}.wav")
except:
print(f"error for {model_id}")
raise StopAsyncIteration(f"error for {model_id}")
return get_chat_response, client
# Local Hosting Utilities
def diva_streaming(diva_model_str):
diva_model = AutoModel.from_pretrained(diva_model_str, trust_remote_code=True, device_map="balanced_low_0")
resampler = Audio(sampling_rate=16_000)
async def diva_audio(audio_input, do_sample=False, temperature=0.001):
sr, y = audio_input
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
stream = diva_model.generate_stream(
a["array"],
(
"You are a helpful assistant The user is talking to you with their voice and you are responding with"
" text."
),
do_sample=do_sample,
max_new_tokens=256,
)
for text in stream:
yield text
return diva_audio, diva_model
def qwen2_streaming(qwen2_model_str):
resampler = Audio(sampling_rate=16_000)
qwen2_processor = AutoProcessor.from_pretrained(qwen2_model_str)
qwen2_model = Qwen2AudioForConditionalGeneration.from_pretrained(qwen2_model_str, device_map="auto")
qwen2_model.generation_config = GenerationConfig.from_pretrained(
qwen2_model_str,
trust_remote_code=True,
do_sample=False,
top_k=50,
top_p=1.0,
)
async def qwen2_audio(audio_input, do_sample=False, temperature=0.001):
if audio_input is None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav")
conversation = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": [
{
"type": "audio",
"audio_url": f"{x}.wav",
},
],
},
]
text = qwen2_processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = [librosa.load(f"{x}.wav", sr=qwen2_processor.feature_extractor.sampling_rate)[0]]
inputs = qwen2_processor(text=text, audios=audios, return_tensors="pt", padding=True)
streamer = TextIteratorStreamer(qwen2_processor)
generation_task = asyncio.create_task(qwen2_model.generate(**inputs, streamer=streamer, max_length=256))
generated_text = ""
async for new_text in streamer:
generated_text += new_text
yield generated_text.split("<|im_start|>assistant\n")[-1].replace("<|im_end|>", "")
await generation_task
os.remove(f"{x}.wav")
return qwen2_audio, qwen2_model
def typhoon_streaming(typhoon_model_str, device="cuda:0"):
resampler = Audio(sampling_rate=16_000)
typhoon_model = AutoModel.from_pretrained(typhoon_model_str, torch_dtype=torch.float16, trust_remote_code=True)
tokenizer = typhoon_model.llama_tokenizer
typhoon_model.to(device)
typhoon_model.eval()
prompt_pattern = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n<Speech><SpeechHere></Speech>"
" {}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
)
prompt = (
"You are a helpful assistant. Respond conversationally to the speech provided in the language it is spoken in."
)
async def typhoon_audio(audio_input, do_sample=False, temperature=0.001):
if audio_input == None:
raise StopAsyncIteration("")
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr}))
streamer = TextIteratorStreamer(tokenizer)
generation_task = asyncio.create_task(
typhoon_model.generate(
audio=a["array"],
prompt=prompt,
prompt_pattern=prompt_pattern,
device=device,
do_sample=False,
max_length=1200,
num_beams=1,
streamer=streamer, # supports TextIteratorStreamer
)
)
generated_text = ""
async for new_text in streamer:
generated_text += new_text
yield generated_text.split("<|start_header_id|>assistant<|end_header_id|>\n\n")[-1].replace(
"<|eot_id|>", ""
)
await generation_task
return typhoon_audio, typhoon_model
|