import asyncio import base64 import json import os from collections import defaultdict from pathlib import Path import google.generativeai as genai import gradio as gr import librosa import numpy as np import soundfile as sf import torch import xxhash from datasets import Audio from openai import AsyncOpenAI from transformers import AutoModel, AutoProcessor, Qwen2AudioForConditionalGeneration, TextIteratorStreamer from transformers.generation import GenerationConfig def _get_prompt_for_model_name(model_id): prompt_dict = defaultdict(lambda: "You are a helpful assistant. Respond conversationally to the speech provided.") # Requested Overrides prompt_dict["scb10x/llama-3-typhoon-audio-8b-2411"] = ( "You are a helpful assistant. Respond conversationally to the speech provided in the language it is spoken in." ) return prompt_dict[model_id] def _get_config_for_model_name(model_id): if "API_MODEL_CONFIG" in os.environ: return json.loads(os.environ["API_MODEL_CONFIG"])[model_id] return { "pipeline/meta-llama/Meta-Llama-3-8B-Instruct": {"base_url": "http://localhost:8001/v1", "api_key": "empty"}, "scb10x/llama-3-typhoon-audio-8b-2411": { "base_url": "http://localhost:8002/v1", "api_key": "empty", }, "WillHeld/DiVA-llama-3-v0-8b": { "base_url": "http://localhost:8003/v1", "api_key": "empty", }, "Qwen/Qwen2-Audio-7B-Instruct": { "base_url": "http://localhost:8004/v1", "api_key": "empty", }, }[model_id] def gradio_gen_factory(streaming_fn, model_name, anonymous): async def gen_from(audio_input, order): with torch.no_grad(): prev_resp = "" async for resp in streaming_fn(audio_input): for char in range(len(prev_resp), len(resp)): my_resp = gr.Textbox( value=resp[: char + 1], info="", visible=True, label=model_name if not anonymous else f"Model {order+1}", elem_classes="lam-response-box", ) yield my_resp await asyncio.sleep(0.001) prev_resp = resp return gen_from def gemini_streaming(model_id): genai.configure(api_key=os.environ["GEMINI_API_KEY"]) resampler = Audio(sampling_rate=16_000) model = genai.GenerativeModel(model_id) async def get_chat_response(audio_input): if audio_input is None: raise StopAsyncIteration("") sr, y = audio_input x = xxhash.xxh32(bytes(y)).hexdigest() y = y.astype(np.float32) y /= np.max(np.abs(y)) a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr})) sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav") prompt = "You are a helpful assistant. Respond conversationally to the speech provided." inputs = [prompt, {"mime_type": "audio/wav", "data": Path(f"{x}.wav").read_bytes()}] text_response = [] responses = model.generate_content(inputs, stream=True) for chunk in responses: text_response.append(chunk.text) yield "".join(text_response) os.remove(f"{x}.wav") return get_chat_response, model def gpt4o_streaming(model_id): client = AsyncOpenAI(api_key=os.environ["OPENAI_API_KEY"]) resampler = Audio(sampling_rate=16_000) async def get_chat_response(audio_input): if audio_input is None: raise StopAsyncIteration("") sr, y = audio_input x = xxhash.xxh32(bytes(y)).hexdigest() y = y.astype(np.float32) y /= np.max(np.abs(y)) a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr})) sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav") with open(f"{x}.wav", "rb") as wav_file: wav_data = wav_file.read() encoded_string = base64.b64encode(wav_data).decode("utf-8") prompt = "You are a helpful assistant. Respond conversationally to the speech provided." try: completion = await client.chat.completions.create( model="gpt-4o-audio-preview", modalities=["text", "audio"], audio={"voice": "alloy", "format": "wav"}, messages=[ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "input_audio", "input_audio": {"data": encoded_string, "format": "wav"}}, ], }, ], ) os.remove(f"{x}.wav") yield completion.choices[0].message.audio.transcript except: raise StopAsyncIteration("error") return get_chat_response, client async def llm_streaming(model_id: str, prompt: str): if "gpt" in model_id: client = AsyncOpenAI() else: client = AsyncOpenAI(**_get_config_for_model_name(model_id)) try: completion = await client.chat.completions.create( model=model_id, messages=[ {"role": "system", "content": "You are helpful assistant."}, { "role": "user", "content": prompt, }, ], stream=True, ) text_response = [] async for chunk in completion: if len(chunk.choices) > 0: text_response.append(chunk.choices[0].delta.content) yield "".join(text_response) except: raise StopAsyncIteration("error") def asr_streaming(model_id, asr_pipe): resampler = Audio(sampling_rate=16_000) async def pipelined(audio_input): if audio_input is None: raise StopAsyncIteration("") sr, y = audio_input x = xxhash.xxh32(bytes(y)).hexdigest() y = y.astype(np.float32) y /= np.max(np.abs(y)) a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr})) sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav") text = await asyncio.to_thread( asr_pipe(f"{x}.wav", generate_kwargs={"task": "transcribe"}, return_timestamps=False)["text"] ) os.remove(f"{x}.wav") async for response in llm_streaming(model_id, prompt=text): yield response return pipelined def api_streaming(model_id): client = AsyncOpenAI(**_get_config_for_model_name(model_id)) resampler = Audio(sampling_rate=16_000) async def get_chat_response(audio_input): if audio_input is None: raise StopAsyncIteration("") sr, y = audio_input x = xxhash.xxh32(bytes(y)).hexdigest() y = y.astype(np.float32) y /= np.max(np.abs(y)) a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr})) sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav") with open(f"{x}.wav", "rb") as wav_file: wav_data = wav_file.read() encoded_string = base64.b64encode(wav_data).decode("utf-8") try: prompt = _get_prompt_for_model_name(model_id) completion = await client.chat.completions.create( model=model_id, messages=[ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "audio", "audio_url": "data:audio/wav;base64," + encoded_string}, ], }, ], stream=True, ) text_response = [] async for chunk in completion: if len(chunk.choices) > 0: text_response.append(chunk.choices[0].delta.content) yield "".join(text_response) os.remove(f"{x}.wav") except: print(f"error for {model_id}") raise StopAsyncIteration(f"error for {model_id}") return get_chat_response, client # Local Hosting Utilities def diva_streaming(diva_model_str): diva_model = AutoModel.from_pretrained(diva_model_str, trust_remote_code=True, device_map="balanced_low_0") resampler = Audio(sampling_rate=16_000) async def diva_audio(audio_input, do_sample=False, temperature=0.001): sr, y = audio_input y = y.astype(np.float32) y /= np.max(np.abs(y)) a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr})) stream = diva_model.generate_stream( a["array"], ( "You are a helpful assistant The user is talking to you with their voice and you are responding with" " text." ), do_sample=do_sample, max_new_tokens=256, ) for text in stream: yield text return diva_audio, diva_model def qwen2_streaming(qwen2_model_str): resampler = Audio(sampling_rate=16_000) qwen2_processor = AutoProcessor.from_pretrained(qwen2_model_str) qwen2_model = Qwen2AudioForConditionalGeneration.from_pretrained(qwen2_model_str, device_map="auto") qwen2_model.generation_config = GenerationConfig.from_pretrained( qwen2_model_str, trust_remote_code=True, do_sample=False, top_k=50, top_p=1.0, ) async def qwen2_audio(audio_input, do_sample=False, temperature=0.001): if audio_input is None: raise StopAsyncIteration("") sr, y = audio_input x = xxhash.xxh32(bytes(y)).hexdigest() y = y.astype(np.float32) y /= np.max(np.abs(y)) a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr})) sf.write(f"{x}.wav", a["array"], a["sampling_rate"], format="wav") conversation = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": [ { "type": "audio", "audio_url": f"{x}.wav", }, ], }, ] text = qwen2_processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios = [librosa.load(f"{x}.wav", sr=qwen2_processor.feature_extractor.sampling_rate)[0]] inputs = qwen2_processor(text=text, audios=audios, return_tensors="pt", padding=True) streamer = TextIteratorStreamer(qwen2_processor) generation_task = asyncio.create_task(qwen2_model.generate(**inputs, streamer=streamer, max_length=256)) generated_text = "" async for new_text in streamer: generated_text += new_text yield generated_text.split("<|im_start|>assistant\n")[-1].replace("<|im_end|>", "") await generation_task os.remove(f"{x}.wav") return qwen2_audio, qwen2_model def typhoon_streaming(typhoon_model_str, device="cuda:0"): resampler = Audio(sampling_rate=16_000) typhoon_model = AutoModel.from_pretrained(typhoon_model_str, torch_dtype=torch.float16, trust_remote_code=True) tokenizer = typhoon_model.llama_tokenizer typhoon_model.to(device) typhoon_model.eval() prompt_pattern = ( "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" " {}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" ) prompt = ( "You are a helpful assistant. Respond conversationally to the speech provided in the language it is spoken in." ) async def typhoon_audio(audio_input, do_sample=False, temperature=0.001): if audio_input == None: raise StopAsyncIteration("") sr, y = audio_input x = xxhash.xxh32(bytes(y)).hexdigest() y = y.astype(np.float32) y /= np.max(np.abs(y)) a = resampler.decode_example(resampler.encode_example({"array": y, "sampling_rate": sr})) streamer = TextIteratorStreamer(tokenizer) generation_task = asyncio.create_task( typhoon_model.generate( audio=a["array"], prompt=prompt, prompt_pattern=prompt_pattern, device=device, do_sample=False, max_length=1200, num_beams=1, streamer=streamer, # supports TextIteratorStreamer ) ) generated_text = "" async for new_text in streamer: generated_text += new_text yield generated_text.split("<|start_header_id|>assistant<|end_header_id|>\n\n")[-1].replace( "<|eot_id|>", "" ) await generation_task return typhoon_audio, typhoon_model