Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,193 Bytes
0f41ba2 0982ce8 3951932 6b78472 6aac4cc 12b3742 6aac4cc ca0709a 12b3742 6aac4cc 12b3742 6aac4cc 12b3742 ca0709a 12b3742 85865a0 12b3742 85865a0 12b3742 85865a0 12b3742 85865a0 12b3742 ca0709a 12b3742 85865a0 12b3742 6aac4cc 0f41ba2 eec0975 776d5b3 2fc2bf3 0f41ba2 eec0975 776d5b3 eec0975 776d5b3 eec0975 776d5b3 eec0975 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 2fc2bf3 0f41ba2 fcc9ef6 0f41ba2 12b3742 0f41ba2 fcc9ef6 0f41ba2 12b3742 0f41ba2 776d5b3 0f41ba2 49f568d 776d5b3 0f41ba2 b266eca 3c7a85f b266eca 0f41ba2 b266eca 3c7a85f b266eca 0f41ba2 b266eca 0f41ba2 49f568d 776d5b3 0f41ba2 b266eca 3c7a85f b266eca 3c7a85f b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 49f568d 0f41ba2 49f568d 0f41ba2 49f568d 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 fcc9ef6 0f41ba2 b266eca 12b3742 b266eca 0f41ba2 fcc9ef6 0f41ba2 b266eca 12b3742 b266eca 12b3742 b266eca 0f41ba2 b266eca 0f41ba2 b266eca 0f41ba2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
import os
# this is a HF Spaces specific hack, as
# (i) building pytorch3d with GPU support is a bit tricky here
# (ii) installing the wheel via requirements.txt breaks ZeroGPU
import spaces
# Use the dynamic approach from PyTorch3D documentation to determine the correct wheel
import sys
import torch
# Print debug information about the environment
try:
cuda_version = torch.version.cuda
torch_version = torch.__version__
python_version = f"{sys.version_info.major}.{sys.version_info.minor}"
print(f"CUDA Version: {cuda_version}")
print(f"PyTorch Version: {torch_version}")
print(f"Python Version: {python_version}")
except Exception as e:
print(f"Error detecting environment versions: {e}")
# Install PyTorch3D properly from source
print("Installing PyTorch3D from source...")
# First uninstall any existing PyTorch3D installation to avoid conflicts
os.system("pip uninstall -y pytorch3d")
# Install dependencies required for building PyTorch3D
os.system("apt-get update && apt-get install -y git build-essential libglib2.0-0 libsm6 libxrender-dev libxext6 ninja-build")
os.system("pip install 'imageio>=2.5.0' 'matplotlib>=3.1.2' 'numpy>=1.17.3' 'psutil>=5.6.5' 'scipy>=1.3.2' 'tqdm>=4.42.1' 'trimesh>=3.0.0'")
os.system("pip install fvcore iopath")
# Clone the PyTorch3D repository
os.system("rm -rf pytorch3d") # Remove any existing directory
os.system("git clone https://github.com/facebookresearch/pytorch3d.git")
# Use a specific release tag that is known to be stable
os.system("cd pytorch3d && git checkout v0.7.4")
# Install PyTorch3D from source with CPU support
os.system("cd pytorch3d && pip install -e .")
# Verify the installation
import_result = os.popen('python -c "import pytorch3d; from pytorch3d import renderer; print(\'PyTorch3D and renderer successfully imported\')" 2>&1').read()
print(import_result)
# If the installation fails, try a different approach with a specific wheel
if "No module named" in import_result or "Error" in import_result:
print("Source installation failed, trying with a specific wheel...")
os.system("pip uninstall -y pytorch3d")
# Try with a specific wheel that's known to work
os.system("pip install https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cpu_pyt201/pytorch3d-0.7.4-cp310-cp310-linux_x86_64.whl")
# Verify again
import_result = os.popen('python -c "import pytorch3d; from pytorch3d import renderer; print(\'PyTorch3D and renderer successfully imported\')" 2>&1').read()
print(import_result)
# Patch the shap_e renderer to handle PyTorch3D renderer import error if needed
shap_e_renderer_path = "/usr/local/lib/python3.10/site-packages/shap_e/models/stf/renderer.py"
if os.path.exists(shap_e_renderer_path):
print(f"Patching shap_e renderer at {shap_e_renderer_path}")
# Read the current content
with open(shap_e_renderer_path, "r") as f:
content = f.read()
# Create a backup
os.system(f"cp {shap_e_renderer_path} {shap_e_renderer_path}.bak")
# Modify the content to handle the error more gracefully
modified_content = content
# Replace the error message
if "exception rendering with PyTorch3D" in content:
modified_content = modified_content.replace(
'warnings.warn(f"exception rendering with PyTorch3D: {exc}")',
'warnings.warn("Using native PyTorch renderer")'
)
# Replace the fallback warning
if "falling back on native PyTorch renderer" in modified_content:
modified_content = modified_content.replace(
'warnings.warn("falling back on native PyTorch renderer, which does not support full gradients")',
'warnings.warn("Using native PyTorch renderer")'
)
# Write the modified content
with open(shap_e_renderer_path, "w") as f:
f.write(modified_content)
print("Successfully patched shap_e renderer")
else:
print(f"shap_e renderer not found at {shap_e_renderer_path}")
# Add a helper function to ensure PyTorch3D works with ZeroGPU
def ensure_pytorch3d_cuda_compatibility():
"""
This function ensures PyTorch3D works correctly with CUDA in ZeroGPU environments.
It should be called at the beginning of any @spaces.GPU decorated function.
"""
try:
import pytorch3d
if torch.cuda.is_available():
# Check if we can access the renderer module
from pytorch3d import renderer
print("PyTorch3D renderer module is available with CUDA")
else:
print("CUDA is not available, using CPU version of PyTorch3D")
except ImportError as e:
print(f"Error importing PyTorch3D: {e}")
except Exception as e:
print(f"Unexpected error with PyTorch3D: {e}")
import torch
import torch.nn as nn
import gradio as gr
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from einops import rearrange
from shap_e.diffusion.sample import sample_latents
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
from shap_e.models.download import load_model, load_config
from shap_e.util.notebooks import create_pan_cameras, decode_latent_images
from shap_e.models.nn.camera import DifferentiableCameraBatch, DifferentiableProjectiveCamera
import math
import time
from requests.exceptions import ReadTimeout, ConnectionError
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
get_zero123plus_input_cameras,
get_circular_camera_poses,
spherical_camera_pose
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground
def create_custom_cameras(size: int, device: torch.device, azimuths: list, elevations: list,
fov_degrees: float, distance: float) -> DifferentiableCameraBatch:
# Object is in a 2x2x2 bounding box (-1 to 1 in each dimension)
object_diagonal = distance # Correct diagonal calculation for the cube
# Calculate radius based on object size and FOV
fov_radians = math.radians(fov_degrees)
radius = (object_diagonal / 2) / math.tan(fov_radians / 2) # Correct radius calculation
origins = []
xs = []
ys = []
zs = []
for azimuth, elevation in zip(azimuths, elevations):
azimuth_rad = np.radians(azimuth-90)
elevation_rad = np.radians(elevation)
# Calculate camera position
x = radius * np.cos(elevation_rad) * np.cos(azimuth_rad)
y = radius * np.cos(elevation_rad) * np.sin(azimuth_rad)
z = radius * np.sin(elevation_rad)
origin = np.array([x, y, z])
# Calculate camera orientation
z_axis = -origin / np.linalg.norm(origin) # Point towards center
x_axis = np.array([-np.sin(azimuth_rad), np.cos(azimuth_rad), 0])
y_axis = np.cross(z_axis, x_axis)
origins.append(origin)
zs.append(z_axis)
xs.append(x_axis)
ys.append(y_axis)
return DifferentiableCameraBatch(
shape=(1, len(origins)),
flat_camera=DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(origins, axis=0)).float().to(device),
x=torch.from_numpy(np.stack(xs, axis=0)).float().to(device),
y=torch.from_numpy(np.stack(ys, axis=0)).float().to(device),
z=torch.from_numpy(np.stack(zs, axis=0)).float().to(device),
width=size,
height=size,
x_fov=fov_radians,
y_fov=fov_radians,
),
)
def load_models():
"""Initialize and load all required models"""
config = OmegaConf.load('configs/instant-nerf-large-best.yaml')
model_config = config.model_config
infer_config = config.infer_config
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load diffusion pipeline with retry logic
print('Loading diffusion pipeline...')
max_retries = 3
retry_delay = 5
for attempt in range(max_retries):
try:
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
local_files_only=False,
resume_download=True,
)
break
except (ReadTimeout, ConnectionError) as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to download pipeline after {max_retries} attempts: {str(e)}")
print(f"Download attempt {attempt + 1} failed, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# Modify UNet to handle 8 input channels instead of 4
in_channels = 8
out_channels = pipeline.unet.conv_in.out_channels
pipeline.unet.register_to_config(in_channels=in_channels)
with torch.no_grad():
new_conv_in = nn.Conv2d(
in_channels, out_channels, pipeline.unet.conv_in.kernel_size,
pipeline.unet.conv_in.stride, pipeline.unet.conv_in.padding
)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(pipeline.unet.conv_in.weight)
pipeline.unet.conv_in = new_conv_in
# Load custom UNet with retry logic
print('Loading custom UNet...')
for attempt in range(max_retries):
try:
pipeline.unet = pipeline.unet.from_pretrained(
"YiftachEde/Sharp-It",
local_files_only=False,
resume_download=True,
).to(torch.float16)
break
except (ReadTimeout, ConnectionError) as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to download UNet after {max_retries} attempts: {str(e)}")
print(f"Download attempt {attempt + 1} failed, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2
pipeline = pipeline.to(device).to(torch_dtype=torch.float16)
# Load reconstruction model with retry logic
print('Loading reconstruction model...')
model = instantiate_from_config(model_config)
for attempt in range(max_retries):
try:
model_path = hf_hub_download(
repo_id="TencentARC/InstantMesh",
filename="instant_nerf_large.ckpt",
repo_type="model",
local_files_only=False,
resume_download=True,
cache_dir="model_cache" # Use a specific cache directory
)
break
except (ReadTimeout, ConnectionError) as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to download model after {max_retries} attempts: {str(e)}")
print(f"Download attempt {attempt + 1} failed, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2
state_dict = torch.load(model_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items()
if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
return pipeline, model, infer_config
@spaces.GPU(duration=20)
def process_images(input_images, prompt, steps=75, guidance_scale=7.5, pipeline=None):
"""Process input images and run refinement"""
# Ensure PyTorch3D works with CUDA
ensure_pytorch3d_cuda_compatibility()
device = pipeline.device
if isinstance(input_images, list):
if len(input_images) == 1:
# Check if this is a pre-arranged layout
img = Image.open(input_images[0].name).convert('RGB')
if img.size == (640, 960):
# This is already a layout, use it directly
input_image = img
else:
# Single view - need 6 copies
img = img.resize((320, 320))
img_array = np.array(img) / 255.0
images = [img_array] * 6
images = np.stack(images)
# Convert to tensor and create layout
images = torch.from_numpy(images).float()
images = images.permute(0, 3, 1, 2)
images = images.reshape(3, 2, 3, 320, 320)
images = images.permute(0, 2, 3, 1, 4)
images = images.reshape(3, 3, 320, 640)
images = images.reshape(1, 3, 960, 640)
# Convert back to PIL
images = images.permute(0, 2, 3, 1)[0]
images = (images.numpy() * 255).astype(np.uint8)
input_image = Image.fromarray(images)
else:
# Multiple individual views
images = []
for img_file in input_images:
img = Image.open(img_file.name).convert('RGB')
img = img.resize((320, 320))
img = np.array(img) / 255.0
images.append(img)
# Pad to 6 images if needed
while len(images) < 6:
images.append(np.zeros_like(images[0]))
images = np.stack(images[:6])
# Convert to tensor and create layout
images = torch.from_numpy(images).float()
images = images.permute(0, 3, 1, 2)
images = images.reshape(3, 2, 3, 320, 320)
images = images.permute(0, 2, 3, 1, 4)
images = images.reshape(3, 3, 320, 640)
images = images.reshape(1, 3, 960, 640)
# Convert back to PIL
images = images.permute(0, 2, 3, 1)[0]
images = (images.numpy() * 255).astype(np.uint8)
input_image = Image.fromarray(images)
else:
raise ValueError("Expected a list of images")
# Generate refined output
output = pipeline.refine(
input_image,
prompt=prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale
).images[0]
return output, input_image
@spaces.GPU(duration=20)
def create_mesh(refined_image, model, infer_config):
"""Generate mesh from refined image"""
# Ensure PyTorch3D works with CUDA
ensure_pytorch3d_cuda_compatibility()
# Convert PIL image to tensor
image = np.array(refined_image) / 255.0
image = torch.from_numpy(image).float().permute(2, 0, 1)
# Reshape to 6 views
image = image.reshape(3, 960, 640)
image = image.reshape(3, 3, 320, 640)
image = image.permute(1, 0, 2, 3)
image = image.reshape(3, 3, 320, 2, 320)
image = image.permute(0, 3, 1, 2, 4)
image = image.reshape(6, 3, 320, 320)
# Add batch dimension
image = image.unsqueeze(0)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to("cuda")
image = image.to("cuda")
with torch.no_grad():
planes = model.forward_planes(image, input_cameras)
mesh_out = model.extract_mesh(planes, **infer_config)
vertices, faces, vertex_colors = mesh_out
return vertices, faces, vertex_colors
class ShapERenderer:
def __init__(self, device):
print("Initializing Shap-E models...")
self.device = device
torch.cuda.empty_cache() # Clear GPU memory before loading
self.xm = load_model('transmitter', device=self.device)
self.model = load_model('text300M', device=self.device)
self.diffusion = diffusion_from_config(load_config('diffusion'))
print("Shap-E models initialized!")
def generate_views(self, prompt, guidance_scale=15.0, num_steps=64):
try:
torch.cuda.empty_cache() # Clear GPU memory before generation
# Generate latents using the text-to-3D model
batch_size = 1
guidance_scale = float(guidance_scale)
with torch.amp.autocast('cuda'): # Use automatic mixed precision
latents = sample_latents(
batch_size=batch_size,
model=self.model,
diffusion=self.diffusion,
guidance_scale=guidance_scale,
model_kwargs=dict(texts=[prompt] * batch_size),
progress=True,
clip_denoised=True,
use_fp16=True,
use_karras=True,
karras_steps=num_steps,
sigma_min=1e-3,
sigma_max=160,
s_churn=0,
)
# Render the 6 views we need with specific viewing angles
size = 320 # Size of each rendered image
images = []
# Define our 6 specific camera positions to match refine.py
azimuths = [30, 90, 150, 210, 270, 330]
elevations = [20, -10, 20, -10, 20, -10]
for i, (azimuth, elevation) in enumerate(zip(azimuths, elevations)):
cameras = create_custom_cameras(size, self.device, azimuths=[azimuth], elevations=[elevation], fov_degrees=30, distance=3.0)
with torch.amp.autocast('cuda'): # Use automatic mixed precision
rendered_image = decode_latent_images(
self.xm,
latents[0],
cameras=cameras,
rendering_mode='stf'
)
images.append(rendered_image[0])
torch.cuda.empty_cache() # Clear GPU memory after each view
# Convert images to uint8
images = [np.array(image) for image in images]
# Create 2x3 grid layout (640x960)
layout = np.zeros((960, 640, 3), dtype=np.uint8)
for i, img in enumerate(images):
row = i // 2
col = i % 2
layout[row*320:(row+1)*320, col*320:(col+1)*320] = img
return Image.fromarray(layout), images
except Exception as e:
print(f"Error in generate_views: {e}")
torch.cuda.empty_cache() # Clear GPU memory on error
raise
class RefinerInterface:
def __init__(self):
print("Initializing InstantMesh models...")
torch.cuda.empty_cache() # Clear GPU memory before loading
self.pipeline, self.model, self.infer_config = load_models()
print("InstantMesh models initialized!")
def refine_model(self, input_image, prompt, steps=75, guidance_scale=7.5):
"""Main refinement function"""
try:
torch.cuda.empty_cache() # Clear GPU memory before processing
# Process image and get refined output
input_image = Image.fromarray(input_image)
# Rotate the layout if needed (if we're getting a 640x960 layout but pipeline expects 960x640)
if input_image.width == 960 and input_image.height == 640:
# Transpose the image to get 960x640 layout
input_array = np.array(input_image)
new_layout = np.zeros((960, 640, 3), dtype=np.uint8)
# Rearrange from 2x3 to 3x2
for i in range(6):
src_row = i // 3
src_col = i % 3
dst_row = i // 2
dst_col = i % 2
new_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
input_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
input_image = Image.fromarray(new_layout)
# Process with the pipeline (expects 960x640)
with torch.amp.autocast('cuda'): # Use automatic mixed precision
refined_output_960x640 = self.pipeline.refine(
input_image,
prompt=prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale
).images[0]
torch.cuda.empty_cache() # Clear GPU memory after refinement
# Generate mesh using the 960x640 format
with torch.amp.autocast('cuda'): # Use automatic mixed precision
vertices, faces, vertex_colors = create_mesh(
refined_output_960x640,
self.model,
self.infer_config
)
torch.cuda.empty_cache() # Clear GPU memory after mesh generation
# Save temporary mesh file
os.makedirs("temp", exist_ok=True)
temp_obj = os.path.join("temp", "refined_mesh.obj")
save_obj(vertices, faces, vertex_colors, temp_obj)
# Convert the output to 640x960 for display
refined_array = np.array(refined_output_960x640)
display_layout = np.zeros((960, 640, 3), dtype=np.uint8)
# Rearrange from 3x2 to 2x3
for i in range(6):
src_row = i // 2
src_col = i % 2
dst_row = i // 2
dst_col = i % 2
display_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
refined_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
refined_output_640x960 = Image.fromarray(display_layout)
return refined_output_640x960, temp_obj
except Exception as e:
print(f"Error in refine_model: {e}")
torch.cuda.empty_cache() # Clear GPU memory on error
raise
def create_demo():
print("Initializing models...")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize models at startup
shap_e = ShapERenderer(device)
refiner = RefinerInterface()
print("All models initialized!")
with gr.Blocks() as demo:
gr.Markdown("# Shap-E to InstantMesh Pipeline")
# First row: Controls
with gr.Row():
with gr.Column():
# Shap-E inputs
shape_prompt = gr.Textbox(
label="Shap-E Prompt",
placeholder="Enter text to generate initial 3D model..."
)
shape_guidance = gr.Slider(
minimum=1,
maximum=30,
value=15.0,
label="Shap-E Guidance Scale"
)
shape_steps = gr.Slider(
minimum=16,
maximum=128,
value=64,
step=16,
label="Shap-E Steps"
)
generate_btn = gr.Button("Generate Views")
with gr.Column():
# Refinement inputs
refine_prompt = gr.Textbox(
label="Refinement Prompt",
placeholder="Enter prompt to guide refinement..."
)
refine_steps = gr.Slider(
minimum=30,
maximum=100,
value=75,
step=1,
label="Refinement Steps"
)
refine_guidance = gr.Slider(
minimum=1,
maximum=20,
value=7.5,
label="Refinement Guidance Scale"
)
refine_btn = gr.Button("Refine")
error_output = gr.Textbox(label="Status/Error Messages", interactive=False)
# Second row: Image panels side by side
with gr.Row():
# Outputs - Images side by side
shape_output = gr.Image(
label="Generated Views",
width=640,
height=960
)
refined_output = gr.Image(
label="Refined Output",
width=640,
height=960
)
# Third row: 3D mesh panel below
with gr.Row():
# 3D mesh centered
mesh_output = gr.Model3D(
label="3D Mesh",
clear_color=[1.0, 1.0, 1.0, 1.0],
)
# Set up event handlers
@spaces.GPU(duration=20) # Reduced duration to 20 seconds
def generate(prompt, guidance_scale, num_steps):
try:
# Ensure PyTorch3D works with CUDA
ensure_pytorch3d_cuda_compatibility()
torch.cuda.empty_cache() # Clear GPU memory before starting
with torch.no_grad():
layout, _ = shap_e.generate_views(prompt, guidance_scale, num_steps)
return layout, None # Return None for error message
except Exception as e:
torch.cuda.empty_cache() # Clear GPU memory on error
error_msg = f"Error during generation: {str(e)}"
print(error_msg)
return None, error_msg
@spaces.GPU(duration=20) # Reduced duration to 20 seconds
def refine(input_image, prompt, steps, guidance_scale):
try:
# Ensure PyTorch3D works with CUDA
ensure_pytorch3d_cuda_compatibility()
torch.cuda.empty_cache() # Clear GPU memory before starting
refined_img, mesh_path = refiner.refine_model(
input_image,
prompt,
steps,
guidance_scale
)
return refined_img, mesh_path, None # Return None for error message
except Exception as e:
torch.cuda.empty_cache() # Clear GPU memory on error
error_msg = f"Error during refinement: {str(e)}"
print(error_msg)
return None, None, error_msg
generate_btn.click(
fn=generate,
inputs=[shape_prompt, shape_guidance, shape_steps],
outputs=[shape_output, error_output]
)
refine_btn.click(
fn=refine,
inputs=[shape_output, refine_prompt, refine_steps, refine_guidance],
outputs=[refined_output, mesh_output, error_output]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(share=True) |