Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
0f41ba2
1
Parent(s):
805a8bb
Adding app.py
Browse files
app.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from pytorch_lightning import seed_everything
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
11 |
+
from einops import rearrange
|
12 |
+
from shap_e.diffusion.sample import sample_latents
|
13 |
+
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
|
14 |
+
from shap_e.models.download import load_model, load_config
|
15 |
+
from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, create_custom_cameras
|
16 |
+
|
17 |
+
from src.utils.train_util import instantiate_from_config
|
18 |
+
from src.utils.camera_util import (
|
19 |
+
FOV_to_intrinsics,
|
20 |
+
get_zero123plus_input_cameras,
|
21 |
+
get_circular_camera_poses,
|
22 |
+
spherical_camera_pose
|
23 |
+
)
|
24 |
+
from src.utils.mesh_util import save_obj, save_glb
|
25 |
+
from src.utils.infer_util import remove_background, resize_foreground
|
26 |
+
|
27 |
+
def load_models():
|
28 |
+
"""Initialize and load all required models"""
|
29 |
+
config = OmegaConf.load('configs/instant-nerf-large-best.yaml')
|
30 |
+
model_config = config.model_config
|
31 |
+
infer_config = config.infer_config
|
32 |
+
|
33 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
34 |
+
|
35 |
+
# Load diffusion pipeline
|
36 |
+
print('Loading diffusion pipeline...')
|
37 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
38 |
+
"sudo-ai/zero123plus-v1.2",
|
39 |
+
custom_pipeline="zero123plus",
|
40 |
+
torch_dtype=torch.float16
|
41 |
+
)
|
42 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
43 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
44 |
+
)
|
45 |
+
|
46 |
+
# Modify UNet to handle 8 input channels instead of 4
|
47 |
+
in_channels = 8
|
48 |
+
out_channels = pipeline.unet.conv_in.out_channels
|
49 |
+
pipeline.unet.register_to_config(in_channels=in_channels)
|
50 |
+
with torch.no_grad():
|
51 |
+
new_conv_in = nn.Conv2d(
|
52 |
+
in_channels, out_channels, pipeline.unet.conv_in.kernel_size,
|
53 |
+
pipeline.unet.conv_in.stride, pipeline.unet.conv_in.padding
|
54 |
+
)
|
55 |
+
new_conv_in.weight.zero_()
|
56 |
+
new_conv_in.weight[:, :4, :, :].copy_(pipeline.unet.conv_in.weight)
|
57 |
+
pipeline.unet.conv_in = new_conv_in
|
58 |
+
|
59 |
+
# Load custom UNet
|
60 |
+
print('Loading custom UNet...')
|
61 |
+
unet_path = "best_21.ckpt"
|
62 |
+
state_dict = torch.load(unet_path, map_location='cpu')
|
63 |
+
|
64 |
+
# Process the state dict to match the model keys
|
65 |
+
if 'state_dict' in state_dict:
|
66 |
+
new_state_dict = {key.replace('unet.unet.', ''): value for key, value in state_dict['state_dict'].items()}
|
67 |
+
pipeline.unet.load_state_dict(new_state_dict, strict=False)
|
68 |
+
else:
|
69 |
+
pipeline.unet.load_state_dict(state_dict, strict=False)
|
70 |
+
|
71 |
+
pipeline = pipeline.to(device).to(torch_dtype=torch.float16)
|
72 |
+
|
73 |
+
# Load reconstruction model
|
74 |
+
print('Loading reconstruction model...')
|
75 |
+
model = instantiate_from_config(model_config)
|
76 |
+
model_path = hf_hub_download(
|
77 |
+
repo_id="TencentARC/InstantMesh",
|
78 |
+
filename="instant_nerf_large.ckpt",
|
79 |
+
repo_type="model"
|
80 |
+
)
|
81 |
+
state_dict = torch.load(model_path, map_location='cpu')['state_dict']
|
82 |
+
state_dict = {k[14:]: v for k, v in state_dict.items()
|
83 |
+
if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
84 |
+
model.load_state_dict(state_dict, strict=True)
|
85 |
+
model = model.to(device)
|
86 |
+
model.eval()
|
87 |
+
|
88 |
+
return pipeline, model, infer_config
|
89 |
+
|
90 |
+
def process_images(input_images, prompt, steps=75, guidance_scale=7.5, pipeline=None):
|
91 |
+
"""Process input images and run refinement"""
|
92 |
+
device = pipeline.device
|
93 |
+
|
94 |
+
if isinstance(input_images, list):
|
95 |
+
if len(input_images) == 1:
|
96 |
+
# Check if this is a pre-arranged layout
|
97 |
+
img = Image.open(input_images[0].name).convert('RGB')
|
98 |
+
if img.size == (640, 960):
|
99 |
+
# This is already a layout, use it directly
|
100 |
+
input_image = img
|
101 |
+
else:
|
102 |
+
# Single view - need 6 copies
|
103 |
+
img = img.resize((320, 320))
|
104 |
+
img_array = np.array(img) / 255.0
|
105 |
+
images = [img_array] * 6
|
106 |
+
images = np.stack(images)
|
107 |
+
|
108 |
+
# Convert to tensor and create layout
|
109 |
+
images = torch.from_numpy(images).float()
|
110 |
+
images = images.permute(0, 3, 1, 2)
|
111 |
+
images = images.reshape(3, 2, 3, 320, 320)
|
112 |
+
images = images.permute(0, 2, 3, 1, 4)
|
113 |
+
images = images.reshape(3, 3, 320, 640)
|
114 |
+
images = images.reshape(1, 3, 960, 640)
|
115 |
+
|
116 |
+
# Convert back to PIL
|
117 |
+
images = images.permute(0, 2, 3, 1)[0]
|
118 |
+
images = (images.numpy() * 255).astype(np.uint8)
|
119 |
+
input_image = Image.fromarray(images)
|
120 |
+
else:
|
121 |
+
# Multiple individual views
|
122 |
+
images = []
|
123 |
+
for img_file in input_images:
|
124 |
+
img = Image.open(img_file.name).convert('RGB')
|
125 |
+
img = img.resize((320, 320))
|
126 |
+
img = np.array(img) / 255.0
|
127 |
+
images.append(img)
|
128 |
+
|
129 |
+
# Pad to 6 images if needed
|
130 |
+
while len(images) < 6:
|
131 |
+
images.append(np.zeros_like(images[0]))
|
132 |
+
images = np.stack(images[:6])
|
133 |
+
|
134 |
+
# Convert to tensor and create layout
|
135 |
+
images = torch.from_numpy(images).float()
|
136 |
+
images = images.permute(0, 3, 1, 2)
|
137 |
+
images = images.reshape(3, 2, 3, 320, 320)
|
138 |
+
images = images.permute(0, 2, 3, 1, 4)
|
139 |
+
images = images.reshape(3, 3, 320, 640)
|
140 |
+
images = images.reshape(1, 3, 960, 640)
|
141 |
+
|
142 |
+
# Convert back to PIL
|
143 |
+
images = images.permute(0, 2, 3, 1)[0]
|
144 |
+
images = (images.numpy() * 255).astype(np.uint8)
|
145 |
+
input_image = Image.fromarray(images)
|
146 |
+
else:
|
147 |
+
raise ValueError("Expected a list of images")
|
148 |
+
|
149 |
+
# Generate refined output
|
150 |
+
output = pipeline.refine(
|
151 |
+
input_image,
|
152 |
+
prompt=prompt,
|
153 |
+
num_inference_steps=int(steps),
|
154 |
+
guidance_scale=guidance_scale
|
155 |
+
).images[0]
|
156 |
+
|
157 |
+
return output, input_image
|
158 |
+
|
159 |
+
def create_mesh(refined_image, model, infer_config):
|
160 |
+
"""Generate mesh from refined image"""
|
161 |
+
# Convert PIL image to tensor
|
162 |
+
image = np.array(refined_image) / 255.0
|
163 |
+
image = torch.from_numpy(image).float().permute(2, 0, 1)
|
164 |
+
|
165 |
+
# Reshape to 6 views
|
166 |
+
image = image.reshape(3, 960, 640)
|
167 |
+
image = image.reshape(3, 3, 320, 640)
|
168 |
+
image = image.permute(1, 0, 2, 3)
|
169 |
+
image = image.reshape(3, 3, 320, 2, 320)
|
170 |
+
image = image.permute(0, 3, 1, 2, 4)
|
171 |
+
image = image.reshape(6, 3, 320, 320)
|
172 |
+
|
173 |
+
# Add batch dimension
|
174 |
+
image = image.unsqueeze(0)
|
175 |
+
|
176 |
+
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to("cuda")
|
177 |
+
image = image.to("cuda")
|
178 |
+
|
179 |
+
with torch.no_grad():
|
180 |
+
planes = model.forward_planes(image, input_cameras)
|
181 |
+
mesh_out = model.extract_mesh(planes, **infer_config)
|
182 |
+
vertices, faces, vertex_colors = mesh_out
|
183 |
+
|
184 |
+
return vertices, faces, vertex_colors
|
185 |
+
|
186 |
+
class ShapERenderer:
|
187 |
+
def __init__(self, device):
|
188 |
+
print("Loading Shap-E models...")
|
189 |
+
self.device = device
|
190 |
+
self.xm = load_model('transmitter', device=device)
|
191 |
+
self.model = load_model('text300M', device=device)
|
192 |
+
self.diffusion = diffusion_from_config(load_config('diffusion'))
|
193 |
+
print("Shap-E models loaded!")
|
194 |
+
|
195 |
+
def generate_views(self, prompt, guidance_scale=15.0, num_steps=64):
|
196 |
+
# Generate latents using the text-to-3D model
|
197 |
+
batch_size = 1
|
198 |
+
guidance_scale = float(guidance_scale)
|
199 |
+
latents = sample_latents(
|
200 |
+
batch_size=batch_size,
|
201 |
+
model=self.model,
|
202 |
+
diffusion=self.diffusion,
|
203 |
+
guidance_scale=guidance_scale,
|
204 |
+
model_kwargs=dict(texts=[prompt] * batch_size),
|
205 |
+
progress=True,
|
206 |
+
clip_denoised=True,
|
207 |
+
use_fp16=True,
|
208 |
+
use_karras=True,
|
209 |
+
karras_steps=num_steps,
|
210 |
+
sigma_min=1e-3,
|
211 |
+
sigma_max=160,
|
212 |
+
s_churn=0,
|
213 |
+
)
|
214 |
+
|
215 |
+
# Render the 6 views we need with specific viewing angles
|
216 |
+
size = 320 # Size of each rendered image
|
217 |
+
images = []
|
218 |
+
|
219 |
+
# Define our 6 specific camera positions to match refine.py
|
220 |
+
azimuths = [30, 90, 150, 210, 270, 330]
|
221 |
+
elevations = [20, -10, 20, -10, 20, -10]
|
222 |
+
|
223 |
+
for i, (azimuth, elevation) in enumerate(zip(azimuths, elevations)):
|
224 |
+
cameras = create_custom_cameras(size, self.device, azimuths=[azimuth], elevations=[elevation], fov_degrees=30, distance=3.0)
|
225 |
+
rendered_image = decode_latent_images(
|
226 |
+
self.xm,
|
227 |
+
latents[0],
|
228 |
+
rendering_mode='stf',
|
229 |
+
cameras=cameras
|
230 |
+
)
|
231 |
+
images.append(rendered_image.detach().cpu().numpy())
|
232 |
+
|
233 |
+
# Convert images to uint8
|
234 |
+
images = [(image).astype(np.uint8) for image in images]
|
235 |
+
|
236 |
+
# Create 2x3 grid layout (640x960) instead of 3x2 (960x640)
|
237 |
+
layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
238 |
+
for i, img in enumerate(images):
|
239 |
+
row = i // 2 # Now 3 images per row
|
240 |
+
col = i % 2 # Now 3 images per row
|
241 |
+
layout[row*320:(row+1)*320, col*320:(col+1)*320] = img
|
242 |
+
|
243 |
+
return Image.fromarray(layout), images
|
244 |
+
|
245 |
+
class RefinerInterface:
|
246 |
+
def __init__(self):
|
247 |
+
print("Initializing InstantMesh models...")
|
248 |
+
self.pipeline, self.model, self.infer_config = load_models()
|
249 |
+
print("InstantMesh models loaded!")
|
250 |
+
|
251 |
+
def refine_model(self, input_image, prompt, steps=75, guidance_scale=7.5):
|
252 |
+
"""Main refinement function"""
|
253 |
+
# Process image and get refined output
|
254 |
+
input_image = Image.fromarray(input_image)
|
255 |
+
|
256 |
+
# Rotate the layout if needed (if we're getting a 640x960 layout but pipeline expects 960x640)
|
257 |
+
if input_image.width == 960 and input_image.height == 640:
|
258 |
+
# Transpose the image to get 960x640 layout
|
259 |
+
input_array = np.array(input_image)
|
260 |
+
new_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
261 |
+
|
262 |
+
# Rearrange from 2x3 to 3x2
|
263 |
+
for i in range(6):
|
264 |
+
src_row = i // 3
|
265 |
+
src_col = i % 3
|
266 |
+
dst_row = i // 2
|
267 |
+
dst_col = i % 2
|
268 |
+
|
269 |
+
new_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
270 |
+
input_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
271 |
+
|
272 |
+
input_image = Image.fromarray(new_layout)
|
273 |
+
|
274 |
+
# Process with the pipeline (expects 960x640)
|
275 |
+
refined_output_960x640 = self.pipeline.refine(
|
276 |
+
input_image,
|
277 |
+
prompt=prompt,
|
278 |
+
num_inference_steps=int(steps),
|
279 |
+
guidance_scale=guidance_scale
|
280 |
+
).images[0]
|
281 |
+
|
282 |
+
# Generate mesh using the 960x640 format
|
283 |
+
vertices, faces, vertex_colors = create_mesh(
|
284 |
+
refined_output_960x640,
|
285 |
+
self.model,
|
286 |
+
self.infer_config
|
287 |
+
)
|
288 |
+
|
289 |
+
# Save temporary mesh file
|
290 |
+
os.makedirs("temp", exist_ok=True)
|
291 |
+
temp_obj = os.path.join("temp", "refined_mesh.obj")
|
292 |
+
save_obj(vertices, faces, vertex_colors, temp_obj)
|
293 |
+
|
294 |
+
# Convert the output to 640x960 for display
|
295 |
+
refined_array = np.array(refined_output_960x640)
|
296 |
+
display_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
297 |
+
|
298 |
+
# Rearrange from 3x2 to 2x3
|
299 |
+
for i in range(6):
|
300 |
+
src_row = i // 2
|
301 |
+
src_col = i % 2
|
302 |
+
dst_row = i // 2
|
303 |
+
dst_col = i % 2
|
304 |
+
|
305 |
+
display_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
306 |
+
refined_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
307 |
+
|
308 |
+
refined_output_640x960 = Image.fromarray(display_layout)
|
309 |
+
|
310 |
+
return refined_output_640x960, temp_obj
|
311 |
+
|
312 |
+
def create_demo():
|
313 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
314 |
+
shap_e = ShapERenderer(device)
|
315 |
+
refiner = RefinerInterface()
|
316 |
+
|
317 |
+
with gr.Blocks() as demo:
|
318 |
+
gr.Markdown("# Shap-E to InstantMesh Pipeline")
|
319 |
+
|
320 |
+
# First row: Controls
|
321 |
+
with gr.Row():
|
322 |
+
with gr.Column():
|
323 |
+
# Shap-E inputs
|
324 |
+
shape_prompt = gr.Textbox(
|
325 |
+
label="Shap-E Prompt",
|
326 |
+
placeholder="Enter text to generate initial 3D model..."
|
327 |
+
)
|
328 |
+
shape_guidance = gr.Slider(
|
329 |
+
minimum=1,
|
330 |
+
maximum=30,
|
331 |
+
value=15.0,
|
332 |
+
label="Shap-E Guidance Scale"
|
333 |
+
)
|
334 |
+
shape_steps = gr.Slider(
|
335 |
+
minimum=16,
|
336 |
+
maximum=128,
|
337 |
+
value=64,
|
338 |
+
step=16,
|
339 |
+
label="Shap-E Steps"
|
340 |
+
)
|
341 |
+
generate_btn = gr.Button("Generate Views")
|
342 |
+
|
343 |
+
with gr.Column():
|
344 |
+
# Refinement inputs
|
345 |
+
refine_prompt = gr.Textbox(
|
346 |
+
label="Refinement Prompt",
|
347 |
+
placeholder="Enter prompt to guide refinement..."
|
348 |
+
)
|
349 |
+
refine_steps = gr.Slider(
|
350 |
+
minimum=30,
|
351 |
+
maximum=100,
|
352 |
+
value=75,
|
353 |
+
step=1,
|
354 |
+
label="Refinement Steps"
|
355 |
+
)
|
356 |
+
refine_guidance = gr.Slider(
|
357 |
+
minimum=1,
|
358 |
+
maximum=20,
|
359 |
+
value=7.5,
|
360 |
+
label="Refinement Guidance Scale"
|
361 |
+
)
|
362 |
+
refine_btn = gr.Button("Refine")
|
363 |
+
|
364 |
+
# Second row: Image panels side by side
|
365 |
+
with gr.Row():
|
366 |
+
# Outputs - Images side by side
|
367 |
+
shape_output = gr.Image(
|
368 |
+
label="Generated Views",
|
369 |
+
width=640, # Swapped dimensions
|
370 |
+
height=960 # Swapped dimensions
|
371 |
+
)
|
372 |
+
refined_output = gr.Image(
|
373 |
+
label="Refined Output",
|
374 |
+
width=640, # Swapped dimensions
|
375 |
+
height=960 # Swapped dimensions
|
376 |
+
)
|
377 |
+
|
378 |
+
# Third row: 3D mesh panel below
|
379 |
+
with gr.Row():
|
380 |
+
# 3D mesh centered
|
381 |
+
mesh_output = gr.Model3D(
|
382 |
+
label="3D Mesh",
|
383 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
384 |
+
width=1280, # Full width
|
385 |
+
height=600 # Taller for better visualization
|
386 |
+
)
|
387 |
+
|
388 |
+
# Set up event handlers
|
389 |
+
def generate(prompt, guidance_scale, num_steps):
|
390 |
+
with torch.no_grad():
|
391 |
+
layout, _ = shap_e.generate_views(prompt, guidance_scale, num_steps)
|
392 |
+
return layout
|
393 |
+
|
394 |
+
def refine(input_image, prompt, steps, guidance_scale):
|
395 |
+
refined_img, mesh_path = refiner.refine_model(
|
396 |
+
input_image,
|
397 |
+
prompt,
|
398 |
+
steps,
|
399 |
+
guidance_scale
|
400 |
+
)
|
401 |
+
return refined_img, mesh_path
|
402 |
+
|
403 |
+
generate_btn.click(
|
404 |
+
fn=generate,
|
405 |
+
inputs=[shape_prompt, shape_guidance, shape_steps],
|
406 |
+
outputs=[shape_output]
|
407 |
+
)
|
408 |
+
|
409 |
+
refine_btn.click(
|
410 |
+
fn=refine,
|
411 |
+
inputs=[shape_output, refine_prompt, refine_steps, refine_guidance],
|
412 |
+
outputs=[refined_output, mesh_output]
|
413 |
+
)
|
414 |
+
|
415 |
+
return demo
|
416 |
+
|
417 |
+
if __name__ == "__main__":
|
418 |
+
demo = create_demo()
|
419 |
+
demo.launch(share=True)
|
app2.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from pytorch_lightning import seed_everything
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
""||||||||||||||||||||"from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
11 |
+
from einops import rearrange
|
12 |
+
from shap_e.diffusion.sample import sample_latents
|
13 |
+
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
|
14 |
+
from shap_e.models.download import load_model, load_config
|
15 |
+
from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, create_custom_cameras
|
16 |
+
|
17 |
+
from src.utils.train_util import instantiate_from_config
|
18 |
+
from src.utils.camera_util import (
|
19 |
+
FOV_to_intrinsics,
|
20 |
+
get_zero123plus_input_cameras,
|
21 |
+
get_circular_camera_poses,
|
22 |
+
spherical_camera_pose
|
23 |
+
)
|
24 |
+
from src.utils.mesh_util import save_obj, save_glb
|
25 |
+
from src.utils.infer_util import remove_background, resize_foreground
|
26 |
+
|
27 |
+
def load_models():
|
28 |
+
"""Initialize and load all required models"""
|
29 |
+
config = OmegaConf.load('configs/instant-nerf-large-best.yaml')
|
30 |
+
model_config = config.model_config
|
31 |
+
infer_config = config.infer_config
|
32 |
+
|
33 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
34 |
+
|
35 |
+
# Load diffusion pipeline
|
36 |
+
print('Loading diffusion pipeline...')
|
37 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
38 |
+
"sudo-ai/zero123plus-v1.2",
|
39 |
+
custom_pipeline="zero123plus",
|
40 |
+
torch_dtype=torch.float16
|
41 |
+
)
|
42 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
43 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
44 |
+
)
|
45 |
+
|
46 |
+
# Modify UNet to handle 8 input channels instead of 4
|
47 |
+
in_channels = 8
|
48 |
+
out_channels = pipeline.unet.conv_in.out_channels
|
49 |
+
pipeline.unet.register_to_config(in_channels=in_channels)
|
50 |
+
with torch.no_grad():
|
51 |
+
new_conv_in = nn.Conv2d(
|
52 |
+
in_channels, out_channels, pipeline.unet.conv_in.kernel_size,
|
53 |
+
pipeline.unet.conv_in.stride, pipeline.unet.conv_in.padding
|
54 |
+
)
|
55 |
+
new_conv_in.weight.zero_()
|
56 |
+
new_conv_in.weight[:, :4, :, :].copy_(pipeline.unet.conv_in.weight)
|
57 |
+
pipeline.unet.conv_in = new_conv_in
|
58 |
+
|
59 |
+
# Load custom UNet
|
60 |
+
print('Loading custom UNet...')
|
61 |
+
unet_path = "best_21.ckpt"
|
62 |
+
state_dict = torch.load(unet_path, map_location='cpu')
|
63 |
+
|
64 |
+
# Process the state dict to match the model keys
|
65 |
+
if 'state_dict' in state_dict:
|
66 |
+
new_state_dict = {key.replace('unet.unet.', ''): value for key, value in state_dict['state_dict'].items()}
|
67 |
+
pipeline.unet.load_state_dict(new_state_dict, strict=False)
|
68 |
+
else:
|
69 |
+
pipeline.unet.load_state_dict(state_dict, strict=False)
|
70 |
+
|
71 |
+
pipeline = pipeline.to(device).to(torch_dtype=torch.float16)
|
72 |
+
|
73 |
+
# Load reconstruction model
|
74 |
+
print('Loading reconstruction model...')
|
75 |
+
model = instantiate_from_config(model_config)
|
76 |
+
model_path = hf_hub_download(
|
77 |
+
repo_id="TencentARC/InstantMesh",
|
78 |
+
filename="instant_nerf_large.ckpt",
|
79 |
+
repo_type="model"
|
80 |
+
)
|
81 |
+
state_dict = torch.load(model_path, map_location='cpu')['state_dict']
|
82 |
+
state_dict = {k[14:]: v for k, v in state_dict.items()
|
83 |
+
if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
84 |
+
model.load_state_dict(state_dict, strict=True)
|
85 |
+
model = model.to(device)
|
86 |
+
model.eval()
|
87 |
+
|
88 |
+
return pipeline, model, infer_config
|
89 |
+
|
90 |
+
def process_images(input_images, prompt, steps=75, guidance_scale=7.5, pipeline=None):
|
91 |
+
"""Process input images and run refinement"""
|
92 |
+
device = pipeline.device
|
93 |
+
|
94 |
+
if isinstance(input_images, list):
|
95 |
+
if len(input_images) == 1:
|
96 |
+
# Check if this is a pre-arranged layout
|
97 |
+
img = Image.open(input_images[0].name).convert('RGB')
|
98 |
+
if img.size == (640, 960):
|
99 |
+
# This is already a layout, use it directly
|
100 |
+
input_image = img
|
101 |
+
else:
|
102 |
+
# Single view - need 6 copies
|
103 |
+
img = img.resize((320, 320))
|
104 |
+
img_array = np.array(img) / 255.0
|
105 |
+
images = [img_array] * 6
|
106 |
+
images = np.stack(images)
|
107 |
+
|
108 |
+
# Convert to tensor and create layout
|
109 |
+
images = torch.from_numpy(images).float()
|
110 |
+
images = images.permute(0, 3, 1, 2)
|
111 |
+
images = images.reshape(3, 2, 3, 320, 320)
|
112 |
+
images = images.permute(0, 2, 3, 1, 4)
|
113 |
+
images = images.reshape(3, 3, 320, 640)
|
114 |
+
images = images.reshape(1, 3, 960, 640)
|
115 |
+
|
116 |
+
# Convert back to PIL
|
117 |
+
images = images.permute(0, 2, 3, 1)[0]
|
118 |
+
images = (images.numpy() * 255).astype(np.uint8)
|
119 |
+
input_image = Image.fromarray(images)
|
120 |
+
else:
|
121 |
+
# Multiple individual views
|
122 |
+
images = []
|
123 |
+
for img_file in input_images:
|
124 |
+
img = Image.open(img_file.name).convert('RGB')
|
125 |
+
img = img.resize((320, 320))
|
126 |
+
img = np.array(img) / 255.0
|
127 |
+
images.append(img)
|
128 |
+
|
129 |
+
# Pad to 6 images if needed
|
130 |
+
while len(images) < 6:
|
131 |
+
images.append(np.zeros_like(images[0]))
|
132 |
+
images = np.stack(images[:6])
|
133 |
+
|
134 |
+
# Convert to tensor and create layout
|
135 |
+
images = torch.from_numpy(images).float()
|
136 |
+
images = images.permute(0, 3, 1, 2)
|
137 |
+
images = images.reshape(3, 2, 3, 320, 320)
|
138 |
+
images = images.permute(0, 2, 3, 1, 4)
|
139 |
+
images = images.reshape(3, 3, 320, 640)
|
140 |
+
images = images.reshape(1, 3, 960, 640)
|
141 |
+
|
142 |
+
# Convert back to PIL
|
143 |
+
images = images.permute(0, 2, 3, 1)[0]
|
144 |
+
images = (images.numpy() * 255).astype(np.uint8)
|
145 |
+
input_image = Image.fromarray(images)
|
146 |
+
else:
|
147 |
+
raise ValueError("Expected a list of images")
|
148 |
+
|
149 |
+
# Generate refined output
|
150 |
+
output = pipeline.refine(
|
151 |
+
input_image,
|
152 |
+
prompt=prompt,
|
153 |
+
num_inference_steps=int(steps),
|
154 |
+
guidance_scale=guidance_scale
|
155 |
+
).images[0]
|
156 |
+
|
157 |
+
return output, input_image
|
158 |
+
|
159 |
+
def create_mesh(refined_image, model, infer_config):
|
160 |
+
"""Generate mesh from refined image"""
|
161 |
+
# Convert PIL image to tensor
|
162 |
+
image = np.array(refined_image) / 255.0
|
163 |
+
image = torch.from_numpy(image).float().permute(2, 0, 1)
|
164 |
+
|
165 |
+
# Reshape to 6 views
|
166 |
+
image = image.reshape(3, 960, 640)
|
167 |
+
image = image.reshape(3, 3, 320, 640)
|
168 |
+
image = image.permute(1, 0, 2, 3)
|
169 |
+
image = image.reshape(3, 3, 320, 2, 320)
|
170 |
+
image = image.permute(0, 3, 1, 2, 4)
|
171 |
+
image = image.reshape(6, 3, 320, 320)
|
172 |
+
|
173 |
+
# Add batch dimension
|
174 |
+
image = image.unsqueeze(0)
|
175 |
+
|
176 |
+
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to("cuda")
|
177 |
+
image = image.to("cuda")
|
178 |
+
|
179 |
+
with torch.no_grad():
|
180 |
+
planes = model.forward_planes(image, input_cameras)
|
181 |
+
mesh_out = model.extract_mesh(planes, **infer_config)
|
182 |
+
vertices, faces, vertex_colors = mesh_out
|
183 |
+
|
184 |
+
return vertices, faces, vertex_colors
|
185 |
+
|
186 |
+
class ShapERenderer:
|
187 |
+
def __init__(self, device):
|
188 |
+
print("Loading Shap-E models...")
|
189 |
+
self.device = device
|
190 |
+
self.xm = load_model('transmitter', device=device)
|
191 |
+
self.model = load_model('text300M', device=device)
|
192 |
+
self.diffusion = diffusion_from_config(load_config('diffusion'))
|
193 |
+
print("Shap-E models loaded!")
|
194 |
+
|
195 |
+
def generate_views(self, prompt, guidance_scale=15.0, num_steps=64):
|
196 |
+
# Generate latents using the text-to-3D model
|
197 |
+
batch_size = 1
|
198 |
+
guidance_scale = float(guidance_scale)
|
199 |
+
latents = sample_latents(
|
200 |
+
batch_size=batch_size,
|
201 |
+
model=self.model,
|
202 |
+
diffusion=self.diffusion,
|
203 |
+
guidance_scale=guidance_scale,
|
204 |
+
model_kwargs=dict(texts=[prompt] * batch_size),
|
205 |
+
progress=True,
|
206 |
+
clip_denoised=True,
|
207 |
+
use_fp16=True,
|
208 |
+
use_karras=True,
|
209 |
+
karras_steps=num_steps,
|
210 |
+
sigma_min=1e-3,
|
211 |
+
sigma_max=160,
|
212 |
+
s_churn=0,
|
213 |
+
)
|
214 |
+
|
215 |
+
# Render the 6 views we need with specific viewing angles
|
216 |
+
size = 320 # Size of each rendered image
|
217 |
+
images = []
|
218 |
+
|
219 |
+
# Define our 6 specific camera positions to match refine.py
|
220 |
+
azimuths = [30, 90, 150, 210, 270, 330]
|
221 |
+
elevations = [20, -10, 20, -10, 20, -10]
|
222 |
+
|
223 |
+
for i, (azimuth, elevation) in enumerate(zip(azimuths, elevations)):
|
224 |
+
cameras = create_custom_cameras(size, self.device, azimuths=[azimuth], elevations=[elevation], fov_degrees=30, distance=3.0)
|
225 |
+
rendered_image = decode_latent_images(
|
226 |
+
self.xm,
|
227 |
+
latents[0],
|
228 |
+
rendering_mode='stf',
|
229 |
+
cameras=cameras
|
230 |
+
)
|
231 |
+
images.append(rendered_image.detach().cpu().numpy())
|
232 |
+
|
233 |
+
# Convert images to uint8
|
234 |
+
images = [(image).astype(np.uint8) for image in images]
|
235 |
+
|
236 |
+
# Create 2x3 grid layout (640x960) instead of 3x2 (960x640)
|
237 |
+
layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
238 |
+
for i, img in enumerate(images):
|
239 |
+
row = i // 2 # Now 3 images per row
|
240 |
+
col = i % 2 # Now 3 images per row
|
241 |
+
layout[row*320:(row+1)*320, col*320:(col+1)*320] = img
|
242 |
+
|
243 |
+
return Image.fromarray(layout), images
|
244 |
+
|
245 |
+
class RefinerInterface:
|
246 |
+
def __init__(self):
|
247 |
+
print("Initializing InstantMesh models...")
|
248 |
+
self.pipeline, self.model, self.infer_config = load_models()
|
249 |
+
print("InstantMesh models loaded!")
|
250 |
+
|
251 |
+
def refine_model(self, input_image, prompt, steps=75, guidance_scale=7.5):
|
252 |
+
"""Main refinement function"""
|
253 |
+
# Process image and get refined output
|
254 |
+
input_image = Image.fromarray(input_image)
|
255 |
+
|
256 |
+
# Rotate the layout if needed (if we're getting a 640x960 layout but pipeline expects 960x640)
|
257 |
+
if input_image.width == 960 and input_image.height == 640:
|
258 |
+
# Transpose the image to get 960x640 layout
|
259 |
+
input_array = np.array(input_image)
|
260 |
+
new_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
261 |
+
|
262 |
+
# Rearrange from 2x3 to 3x2
|
263 |
+
for i in range(6):
|
264 |
+
src_row = i // 3
|
265 |
+
src_col = i % 3
|
266 |
+
dst_row = i // 2
|
267 |
+
dst_col = i % 2
|
268 |
+
|
269 |
+
new_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
270 |
+
input_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
271 |
+
|
272 |
+
input_image = Image.fromarray(new_layout)
|
273 |
+
|
274 |
+
# Process with the pipeline (expects 960x640)
|
275 |
+
refined_output_960x640 = self.pipeline.refine(
|
276 |
+
input_image,
|
277 |
+
prompt=prompt,
|
278 |
+
num_inference_steps=int(steps),
|
279 |
+
guidance_scale=guidance_scale
|
280 |
+
).images[0]
|
281 |
+
|
282 |
+
# Generate mesh using the 960x640 format
|
283 |
+
vertices, faces, vertex_colors = create_mesh(
|
284 |
+
refined_output_960x640,
|
285 |
+
self.model,
|
286 |
+
self.infer_config
|
287 |
+
)
|
288 |
+
|
289 |
+
# Save temporary mesh file
|
290 |
+
os.makedirs("temp", exist_ok=True)
|
291 |
+
temp_obj = os.path.join("temp", "refined_mesh.obj")
|
292 |
+
save_obj(vertices, faces, vertex_colors, temp_obj)
|
293 |
+
|
294 |
+
# Convert the output to 640x960 for display
|
295 |
+
refined_array = np.array(refined_output_960x640)
|
296 |
+
display_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
297 |
+
|
298 |
+
# Rearrange from 3x2 to 2x3
|
299 |
+
for i in range(6):
|
300 |
+
src_row = i // 2
|
301 |
+
src_col = i % 2
|
302 |
+
dst_row = i // 2
|
303 |
+
dst_col = i % 2
|
304 |
+
|
305 |
+
display_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
306 |
+
refined_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
307 |
+
|
308 |
+
refined_output_640x960 = Image.fromarray(display_layout)
|
309 |
+
|
310 |
+
return refined_output_640x960, temp_obj
|
311 |
+
|
312 |
+
def create_demo():
|
313 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
314 |
+
shap_e = ShapERenderer(device)
|
315 |
+
refiner = RefinerInterface()
|
316 |
+
|
317 |
+
with gr.Blocks() as demo:
|
318 |
+
gr.Markdown("# Shap-E to InstantMesh Pipeline")
|
319 |
+
|
320 |
+
# First row: Controls
|
321 |
+
with gr.Row():
|
322 |
+
with gr.Column():
|
323 |
+
# Shap-E inputs
|
324 |
+
shape_prompt = gr.Textbox(
|
325 |
+
label="Shap-E Prompt",
|
326 |
+
placeholder="Enter text to generate initial 3D model..."
|
327 |
+
)
|
328 |
+
shape_guidance = gr.Slider(
|
329 |
+
minimum=1,
|
330 |
+
maximum=30,
|
331 |
+
value=15.0,
|
332 |
+
label="Shap-E Guidance Scale"
|
333 |
+
)
|
334 |
+
shape_steps = gr.Slider(
|
335 |
+
minimum=16,
|
336 |
+
maximum=128,
|
337 |
+
value=64,
|
338 |
+
step=16,
|
339 |
+
label="Shap-E Steps"
|
340 |
+
)
|
341 |
+
generate_btn = gr.Button("Generate Views")
|
342 |
+
|
343 |
+
with gr.Column():
|
344 |
+
# Refinement inputs
|
345 |
+
refine_prompt = gr.Textbox(
|
346 |
+
label="Refinement Prompt",
|
347 |
+
placeholder="Enter prompt to guide refinement..."
|
348 |
+
)
|
349 |
+
refine_steps = gr.Slider(
|
350 |
+
minimum=30,
|
351 |
+
maximum=100,
|
352 |
+
value=75,
|
353 |
+
step=1,
|
354 |
+
label="Refinement Steps"
|
355 |
+
)
|
356 |
+
refine_guidance = gr.Slider(
|
357 |
+
minimum=1,
|
358 |
+
maximum=20,
|
359 |
+
value=7.5,
|
360 |
+
label="Refinement Guidance Scale"
|
361 |
+
)
|
362 |
+
refine_btn = gr.Button("Refine")
|
363 |
+
|
364 |
+
# Second row: Image panels side by side
|
365 |
+
with gr.Row():
|
366 |
+
# Outputs - Images side by side
|
367 |
+
shape_output = gr.Image(
|
368 |
+
label="Generated Views",
|
369 |
+
width=640, # Swapped dimensions
|
370 |
+
height=960 # Swapped dimensions
|
371 |
+
)
|
372 |
+
refined_output = gr.Image(
|
373 |
+
label="Refined Output",
|
374 |
+
width=640, # Swapped dimensions
|
375 |
+
height=960 # Swapped dimensions
|
376 |
+
)
|
377 |
+
|
378 |
+
# Third row: 3D mesh panel below
|
379 |
+
with gr.Row():
|
380 |
+
# 3D mesh centered
|
381 |
+
mesh_output = gr.Model3D(
|
382 |
+
label="3D Mesh",
|
383 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
384 |
+
width=1280, # Full width
|
385 |
+
height=600 # Taller for better visualization
|
386 |
+
)
|
387 |
+
|
388 |
+
# Set up event handlers
|
389 |
+
def generate(prompt, guidance_scale, num_steps):
|
390 |
+
with torch.no_grad():
|
391 |
+
layout, _ = shap_e.generate_views(prompt, guidance_scale, num_steps)
|
392 |
+
return layout
|
393 |
+
|
394 |
+
def refine(input_image, prompt, steps, guidance_scale):
|
395 |
+
refined_img, mesh_path = refiner.refine_model(
|
396 |
+
input_image,
|
397 |
+
prompt,
|
398 |
+
steps,
|
399 |
+
guidance_scale
|
400 |
+
)
|
401 |
+
return refined_img, mesh_path
|
402 |
+
|
403 |
+
generate_btn.click(
|
404 |
+
fn=generate,
|
405 |
+
inputs=[shape_prompt, shape_guidance, shape_steps],
|
406 |
+
outputs=[shape_output]
|
407 |
+
)
|
408 |
+
|
409 |
+
refine_btn.click(
|
410 |
+
fn=refine,
|
411 |
+
inputs=[shape_output, refine_prompt, refine_steps, refine_guidance],
|
412 |
+
outputs=[refined_output, mesh_output]
|
413 |
+
)
|
414 |
+
|
415 |
+
return demo
|
416 |
+
|
417 |
+
if __name__ == "__main__":
|
418 |
+
demo = create_demo()
|
419 |
+
demo.launch(share=True)
|