Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
b266eca
1
Parent(s):
776d5b3
fix
Browse files
app.py
CHANGED
@@ -237,62 +237,78 @@ class ShapERenderer:
|
|
237 |
print("Shap-E models initialized!")
|
238 |
|
239 |
def ensure_models_loaded(self):
|
240 |
-
if self.
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
def generate_views(self, prompt, guidance_scale=15.0, num_steps=64):
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
294 |
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
class RefinerInterface:
|
298 |
def __init__(self):
|
@@ -304,70 +320,88 @@ class RefinerInterface:
|
|
304 |
|
305 |
def ensure_models_loaded(self):
|
306 |
if self.pipeline is None:
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
def refine_model(self, input_image, prompt, steps=75, guidance_scale=7.5):
|
310 |
"""Main refinement function"""
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
#
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
-
#
|
|
|
|
|
|
|
|
|
323 |
for i in range(6):
|
324 |
-
src_row = i //
|
325 |
-
src_col = i %
|
326 |
dst_row = i // 2
|
327 |
dst_col = i % 2
|
328 |
|
329 |
-
|
330 |
-
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
# Process with the pipeline (expects 960x640)
|
335 |
-
refined_output_960x640 = self.pipeline.refine(
|
336 |
-
input_image,
|
337 |
-
prompt=prompt,
|
338 |
-
num_inference_steps=int(steps),
|
339 |
-
guidance_scale=guidance_scale
|
340 |
-
).images[0]
|
341 |
-
|
342 |
-
# Generate mesh using the 960x640 format
|
343 |
-
vertices, faces, vertex_colors = create_mesh(
|
344 |
-
refined_output_960x640,
|
345 |
-
self.model,
|
346 |
-
self.infer_config
|
347 |
-
)
|
348 |
-
|
349 |
-
# Save temporary mesh file
|
350 |
-
os.makedirs("temp", exist_ok=True)
|
351 |
-
temp_obj = os.path.join("temp", "refined_mesh.obj")
|
352 |
-
save_obj(vertices, faces, vertex_colors, temp_obj)
|
353 |
-
|
354 |
-
# Convert the output to 640x960 for display
|
355 |
-
refined_array = np.array(refined_output_960x640)
|
356 |
-
display_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
357 |
-
|
358 |
-
# Rearrange from 3x2 to 2x3
|
359 |
-
for i in range(6):
|
360 |
-
src_row = i // 2
|
361 |
-
src_col = i % 2
|
362 |
-
dst_row = i // 2
|
363 |
-
dst_col = i % 2
|
364 |
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
|
372 |
def create_demo():
|
373 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -420,19 +454,20 @@ def create_demo():
|
|
420 |
label="Refinement Guidance Scale"
|
421 |
)
|
422 |
refine_btn = gr.Button("Refine")
|
|
|
423 |
|
424 |
# Second row: Image panels side by side
|
425 |
with gr.Row():
|
426 |
# Outputs - Images side by side
|
427 |
shape_output = gr.Image(
|
428 |
label="Generated Views",
|
429 |
-
width=640,
|
430 |
-
height=960
|
431 |
)
|
432 |
refined_output = gr.Image(
|
433 |
label="Refined Output",
|
434 |
-
width=640,
|
435 |
-
height=960
|
436 |
)
|
437 |
|
438 |
# Third row: 3D mesh panel below
|
@@ -441,37 +476,49 @@ def create_demo():
|
|
441 |
mesh_output = gr.Model3D(
|
442 |
label="3D Mesh",
|
443 |
clear_color=[1.0, 1.0, 1.0, 1.0],
|
444 |
-
# width=1280, # Full width
|
445 |
-
# height=600 # Taller for better visualization
|
446 |
)
|
447 |
|
448 |
# Set up event handlers
|
449 |
-
@spaces.GPU(duration=
|
450 |
def generate(prompt, guidance_scale, num_steps):
|
451 |
-
|
452 |
-
|
453 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
|
455 |
-
@spaces.GPU(duration=
|
456 |
def refine(input_image, prompt, steps, guidance_scale):
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
|
465 |
generate_btn.click(
|
466 |
fn=generate,
|
467 |
inputs=[shape_prompt, shape_guidance, shape_steps],
|
468 |
-
outputs=[shape_output]
|
469 |
)
|
470 |
|
471 |
refine_btn.click(
|
472 |
fn=refine,
|
473 |
inputs=[shape_output, refine_prompt, refine_steps, refine_guidance],
|
474 |
-
outputs=[refined_output, mesh_output]
|
475 |
)
|
476 |
|
477 |
return demo
|
|
|
237 |
print("Shap-E models initialized!")
|
238 |
|
239 |
def ensure_models_loaded(self):
|
240 |
+
if self.xm is None:
|
241 |
+
try:
|
242 |
+
torch.cuda.empty_cache() # Clear GPU memory before loading
|
243 |
+
self.xm = load_model('transmitter', device=self.device)
|
244 |
+
self.model = load_model('text300M', device=self.device)
|
245 |
+
self.diffusion = diffusion_from_config(load_config('diffusion'))
|
246 |
+
except Exception as e:
|
247 |
+
print(f"Error loading models: {e}")
|
248 |
+
raise
|
249 |
|
250 |
def generate_views(self, prompt, guidance_scale=15.0, num_steps=64):
|
251 |
+
try:
|
252 |
+
self.ensure_models_loaded()
|
253 |
+
torch.cuda.empty_cache() # Clear GPU memory before generation
|
254 |
+
|
255 |
+
# Generate latents using the text-to-3D model
|
256 |
+
batch_size = 1
|
257 |
+
guidance_scale = float(guidance_scale)
|
258 |
+
|
259 |
+
with torch.cuda.amp.autocast(): # Use automatic mixed precision
|
260 |
+
latents = sample_latents(
|
261 |
+
batch_size=batch_size,
|
262 |
+
model=self.model,
|
263 |
+
diffusion=self.diffusion,
|
264 |
+
guidance_scale=guidance_scale,
|
265 |
+
model_kwargs=dict(texts=[prompt] * batch_size),
|
266 |
+
progress=True,
|
267 |
+
clip_denoised=True,
|
268 |
+
use_fp16=True,
|
269 |
+
use_karras=True,
|
270 |
+
karras_steps=num_steps,
|
271 |
+
sigma_min=1e-3,
|
272 |
+
sigma_max=160,
|
273 |
+
s_churn=0,
|
274 |
+
)
|
275 |
|
276 |
+
# Render the 6 views we need with specific viewing angles
|
277 |
+
size = 320 # Size of each rendered image
|
278 |
+
images = []
|
279 |
+
|
280 |
+
# Define our 6 specific camera positions to match refine.py
|
281 |
+
azimuths = [30, 90, 150, 210, 270, 330]
|
282 |
+
elevations = [20, -10, 20, -10, 20, -10]
|
283 |
+
|
284 |
+
for i, (azimuth, elevation) in enumerate(zip(azimuths, elevations)):
|
285 |
+
cameras = create_custom_cameras(size, self.device, azimuths=[azimuth], elevations=[elevation], fov_degrees=30, distance=3.0)
|
286 |
+
with torch.cuda.amp.autocast(): # Use automatic mixed precision
|
287 |
+
rendered_image = decode_latent_images(
|
288 |
+
self.xm,
|
289 |
+
latents[0],
|
290 |
+
cameras=cameras,
|
291 |
+
rendering_mode='stf'
|
292 |
+
)
|
293 |
+
images.append(rendered_image[0])
|
294 |
+
torch.cuda.empty_cache() # Clear GPU memory after each view
|
295 |
+
|
296 |
+
# Convert images to uint8
|
297 |
+
images = [np.array(image) for image in images]
|
298 |
+
|
299 |
+
# Create 2x3 grid layout (640x960)
|
300 |
+
layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
301 |
+
for i, img in enumerate(images):
|
302 |
+
row = i // 2
|
303 |
+
col = i % 2
|
304 |
+
layout[row*320:(row+1)*320, col*320:(col+1)*320] = img
|
305 |
|
306 |
+
return Image.fromarray(layout), images
|
307 |
+
|
308 |
+
except Exception as e:
|
309 |
+
print(f"Error in generate_views: {e}")
|
310 |
+
torch.cuda.empty_cache() # Clear GPU memory on error
|
311 |
+
raise
|
312 |
|
313 |
class RefinerInterface:
|
314 |
def __init__(self):
|
|
|
320 |
|
321 |
def ensure_models_loaded(self):
|
322 |
if self.pipeline is None:
|
323 |
+
try:
|
324 |
+
torch.cuda.empty_cache() # Clear GPU memory before loading
|
325 |
+
self.pipeline, self.model, self.infer_config = load_models()
|
326 |
+
except Exception as e:
|
327 |
+
print(f"Error loading models: {e}")
|
328 |
+
raise
|
329 |
|
330 |
def refine_model(self, input_image, prompt, steps=75, guidance_scale=7.5):
|
331 |
"""Main refinement function"""
|
332 |
+
try:
|
333 |
+
self.ensure_models_loaded()
|
334 |
+
torch.cuda.empty_cache() # Clear GPU memory before processing
|
335 |
+
|
336 |
+
# Process image and get refined output
|
337 |
+
input_image = Image.fromarray(input_image)
|
338 |
+
|
339 |
+
# Rotate the layout if needed (if we're getting a 640x960 layout but pipeline expects 960x640)
|
340 |
+
if input_image.width == 960 and input_image.height == 640:
|
341 |
+
# Transpose the image to get 960x640 layout
|
342 |
+
input_array = np.array(input_image)
|
343 |
+
new_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
344 |
+
|
345 |
+
# Rearrange from 2x3 to 3x2
|
346 |
+
for i in range(6):
|
347 |
+
src_row = i // 3
|
348 |
+
src_col = i % 3
|
349 |
+
dst_row = i // 2
|
350 |
+
dst_col = i % 2
|
351 |
+
|
352 |
+
new_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
353 |
+
input_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
354 |
+
|
355 |
+
input_image = Image.fromarray(new_layout)
|
356 |
+
|
357 |
+
# Process with the pipeline (expects 960x640)
|
358 |
+
with torch.cuda.amp.autocast(): # Use automatic mixed precision
|
359 |
+
refined_output_960x640 = self.pipeline.refine(
|
360 |
+
input_image,
|
361 |
+
prompt=prompt,
|
362 |
+
num_inference_steps=int(steps),
|
363 |
+
guidance_scale=guidance_scale
|
364 |
+
).images[0]
|
365 |
+
|
366 |
+
torch.cuda.empty_cache() # Clear GPU memory after refinement
|
367 |
+
|
368 |
+
# Generate mesh using the 960x640 format
|
369 |
+
with torch.cuda.amp.autocast(): # Use automatic mixed precision
|
370 |
+
vertices, faces, vertex_colors = create_mesh(
|
371 |
+
refined_output_960x640,
|
372 |
+
self.model,
|
373 |
+
self.infer_config
|
374 |
+
)
|
375 |
+
|
376 |
+
torch.cuda.empty_cache() # Clear GPU memory after mesh generation
|
377 |
+
|
378 |
+
# Save temporary mesh file
|
379 |
+
os.makedirs("temp", exist_ok=True)
|
380 |
+
temp_obj = os.path.join("temp", "refined_mesh.obj")
|
381 |
+
save_obj(vertices, faces, vertex_colors, temp_obj)
|
382 |
|
383 |
+
# Convert the output to 640x960 for display
|
384 |
+
refined_array = np.array(refined_output_960x640)
|
385 |
+
display_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
386 |
+
|
387 |
+
# Rearrange from 3x2 to 2x3
|
388 |
for i in range(6):
|
389 |
+
src_row = i // 2
|
390 |
+
src_col = i % 2
|
391 |
dst_row = i // 2
|
392 |
dst_col = i % 2
|
393 |
|
394 |
+
display_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
395 |
+
refined_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
396 |
|
397 |
+
refined_output_640x960 = Image.fromarray(display_layout)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
|
399 |
+
return refined_output_640x960, temp_obj
|
400 |
+
|
401 |
+
except Exception as e:
|
402 |
+
print(f"Error in refine_model: {e}")
|
403 |
+
torch.cuda.empty_cache() # Clear GPU memory on error
|
404 |
+
raise
|
405 |
|
406 |
def create_demo():
|
407 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
454 |
label="Refinement Guidance Scale"
|
455 |
)
|
456 |
refine_btn = gr.Button("Refine")
|
457 |
+
error_output = gr.Textbox(label="Status/Error Messages", interactive=False)
|
458 |
|
459 |
# Second row: Image panels side by side
|
460 |
with gr.Row():
|
461 |
# Outputs - Images side by side
|
462 |
shape_output = gr.Image(
|
463 |
label="Generated Views",
|
464 |
+
width=640,
|
465 |
+
height=960
|
466 |
)
|
467 |
refined_output = gr.Image(
|
468 |
label="Refined Output",
|
469 |
+
width=640,
|
470 |
+
height=960
|
471 |
)
|
472 |
|
473 |
# Third row: 3D mesh panel below
|
|
|
476 |
mesh_output = gr.Model3D(
|
477 |
label="3D Mesh",
|
478 |
clear_color=[1.0, 1.0, 1.0, 1.0],
|
|
|
|
|
479 |
)
|
480 |
|
481 |
# Set up event handlers
|
482 |
+
@spaces.GPU(duration=120) # Increased duration to 120 seconds
|
483 |
def generate(prompt, guidance_scale, num_steps):
|
484 |
+
try:
|
485 |
+
torch.cuda.empty_cache() # Clear GPU memory before starting
|
486 |
+
with torch.no_grad():
|
487 |
+
layout, _ = shap_e.generate_views(prompt, guidance_scale, num_steps)
|
488 |
+
return layout, None # Return None for error message
|
489 |
+
except Exception as e:
|
490 |
+
torch.cuda.empty_cache() # Clear GPU memory on error
|
491 |
+
error_msg = f"Error during generation: {str(e)}"
|
492 |
+
print(error_msg)
|
493 |
+
return None, error_msg
|
494 |
|
495 |
+
@spaces.GPU(duration=120) # Increased duration to 120 seconds
|
496 |
def refine(input_image, prompt, steps, guidance_scale):
|
497 |
+
try:
|
498 |
+
torch.cuda.empty_cache() # Clear GPU memory before starting
|
499 |
+
refined_img, mesh_path = refiner.refine_model(
|
500 |
+
input_image,
|
501 |
+
prompt,
|
502 |
+
steps,
|
503 |
+
guidance_scale
|
504 |
+
)
|
505 |
+
return refined_img, mesh_path, None # Return None for error message
|
506 |
+
except Exception as e:
|
507 |
+
torch.cuda.empty_cache() # Clear GPU memory on error
|
508 |
+
error_msg = f"Error during refinement: {str(e)}"
|
509 |
+
print(error_msg)
|
510 |
+
return None, None, error_msg
|
511 |
|
512 |
generate_btn.click(
|
513 |
fn=generate,
|
514 |
inputs=[shape_prompt, shape_guidance, shape_steps],
|
515 |
+
outputs=[shape_output, error_output]
|
516 |
)
|
517 |
|
518 |
refine_btn.click(
|
519 |
fn=refine,
|
520 |
inputs=[shape_output, refine_prompt, refine_steps, refine_guidance],
|
521 |
+
outputs=[refined_output, mesh_output, error_output]
|
522 |
)
|
523 |
|
524 |
return demo
|