Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import cv2 | |
import numpy as np | |
import torch | |
import gradio as gr | |
from PIL import Image, ImageFilter, ImageDraw | |
from huggingface_hub import snapshot_download | |
from diffusers import FluxFillPipeline, FluxPriorReduxPipeline | |
import math | |
from utils.utils import get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask | |
import os,sys | |
os.system("python -m pip install -e segment_anything") | |
os.system("python -m pip install -e GroundingDINO") | |
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) | |
sys.path.append(os.path.join(os.getcwd(), "segment_anything")) | |
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth") | |
os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth") | |
import torchvision | |
from GroundingDINO.groundingdino.util.inference import load_model | |
from segment_anything import build_sam, SamPredictor | |
import spaces | |
import GroundingDINO.groundingdino.datasets.transforms as T | |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
# GroundingDINO config and checkpoint | |
GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py" | |
GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swinb_cogcoor.pth" | |
# Segment-Anything checkpoint | |
SAM_ENCODER_VERSION = "vit_h" | |
SAM_CHECKPOINT_PATH = "./sam_vit_h_4b8939.pth" | |
# Building GroundingDINO inference model | |
groundingdino_model = load_model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device="cuda") | |
# Building SAM Model and SAM Predictor | |
sam = build_sam(checkpoint=SAM_CHECKPOINT_PATH) | |
sam.to(device="cuda") | |
sam_predictor = SamPredictor(sam) | |
def transform_image(image_pil): | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image | |
def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True): | |
caption = caption.lower() | |
caption = caption.strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
with torch.no_grad(): | |
outputs = model(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
logits.shape[0] | |
# filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
logits_filt.shape[0] | |
# get phrase | |
tokenlizer = model.tokenizer | |
tokenized = tokenlizer(caption) | |
# build pred | |
pred_phrases = [] | |
scores = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap( | |
logit > text_threshold, tokenized, tokenlizer) | |
if with_logits: | |
pred_phrases.append( | |
pred_phrase + f"({str(logit.max().item())[:4]})") | |
else: | |
pred_phrases.append(pred_phrase) | |
scores.append(logit.max().item()) | |
return boxes_filt, torch.Tensor(scores), pred_phrases | |
def get_mask(image, label): | |
global groundingdino_model, sam_predictor | |
image_pil = image.convert("RGB") | |
transformed_image = transform_image(image_pil) | |
boxes_filt, scores, pred_phrases = get_grounding_output( | |
groundingdino_model, transformed_image, label | |
) | |
size = image_pil.size | |
# process boxes | |
H, W = size[1], size[0] | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
boxes_filt = boxes_filt.cpu() | |
# nms | |
nms_idx = torchvision.ops.nms( | |
boxes_filt, scores, 0.8).numpy().tolist() | |
boxes_filt = boxes_filt[nms_idx] | |
pred_phrases = [pred_phrases[idx] for idx in nms_idx] | |
image = np.array(image_pil) | |
sam_predictor.set_image(image) | |
transformed_boxes = sam_predictor.transform.apply_boxes_torch( | |
boxes_filt, image.shape[:2]).to("cuda") | |
masks, _, _ = sam_predictor.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes, | |
multimask_output=False, | |
) | |
result_mask = masks[0][0].cpu().numpy() | |
result_mask = Image.fromarray(result_mask) | |
return result_mask | |
hf_token = os.getenv("HF_TOKEN") | |
snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev", local_dir="./FLUX.1-Fill-dev", token=hf_token) | |
snapshot_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", local_dir="./FLUX.1-Redux-dev", token=hf_token) | |
snapshot_download(repo_id="WensongSong/Insert-Anything", local_dir="./insertanything_model", token=hf_token) | |
dtype = torch.bfloat16 | |
size = (768, 768) | |
pipe = FluxFillPipeline.from_pretrained( | |
"./FLUX.1-Fill-dev", | |
torch_dtype=dtype | |
).to("cuda") | |
pipe.load_lora_weights( | |
"./insertanything_model/20250321_steps5000_pytorch_lora_weights.safetensors" | |
) | |
redux = FluxPriorReduxPipeline.from_pretrained("./FLUX.1-Redux-dev").to(dtype=dtype).to("cuda") | |
### example ##### | |
ref_dir='./examples/ref_image' | |
ref_mask_dir='./examples/ref_mask' | |
image_dir='./examples/source_image' | |
image_mask_dir='./examples/source_mask' | |
ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] | |
ref_list.sort() | |
ref_mask_list=[os.path.join(ref_mask_dir,file) for file in os.listdir(ref_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] | |
ref_mask_list.sort() | |
image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] | |
image_list.sort() | |
image_mask_list=[os.path.join(image_mask_dir,file) for file in os.listdir(image_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] | |
image_mask_list.sort() | |
### example ##### | |
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt): | |
if base_mask_option == "Draw Mask": | |
tar_image = base_image["background"] | |
tar_mask = base_image["layers"][0] | |
else: | |
tar_image = base_image["background"] | |
tar_mask = base_mask["background"] | |
if ref_mask_option == "Draw Mask": | |
ref_image = reference_image["background"] | |
ref_mask = reference_image["layers"][0] | |
elif ref_mask_option == "Upload with Mask": | |
ref_image = reference_image["background"] | |
ref_mask = ref_mask["background"] | |
else: | |
ref_image = reference_image["background"] | |
ref_mask = get_mask(ref_image, text_prompt) | |
tar_image = tar_image.convert("RGB") | |
tar_mask = tar_mask.convert("L") | |
ref_image = ref_image.convert("RGB") | |
ref_mask = ref_mask.convert("L") | |
return_ref_mask = ref_mask.copy() | |
tar_image = np.asarray(tar_image) | |
tar_mask = np.asarray(tar_mask) | |
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8) | |
ref_image = np.asarray(ref_image) | |
ref_mask = np.asarray(ref_mask) | |
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8) | |
if tar_mask.sum() == 0: | |
raise gr.Error('No mask for the background image.Please check mask button!') | |
if ref_mask.sum() == 0: | |
raise gr.Error('No mask for the reference image.Please check mask button!') | |
ref_box_yyxx = get_bbox_from_mask(ref_mask) | |
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) | |
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3) | |
y1,y2,x1,x2 = ref_box_yyxx | |
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:] | |
ref_mask = ref_mask[y1:y2,x1:x2] | |
ratio = 1.3 | |
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) | |
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False) | |
kernel = np.ones((7, 7), np.uint8) | |
iterations = 2 | |
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations) | |
# zome in | |
tar_box_yyxx = get_bbox_from_mask(tar_mask) | |
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2) | |
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2) #1.2 1.6 | |
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box | |
y1,y2,x1,x2 = tar_box_yyxx_crop | |
old_tar_image = tar_image.copy() | |
tar_image = tar_image[y1:y2,x1:x2,:] | |
tar_mask = tar_mask[y1:y2,x1:x2] | |
H1, W1 = tar_image.shape[0], tar_image.shape[1] | |
# zome in | |
tar_mask = pad_to_square(tar_mask, pad_value=0) | |
tar_mask = cv2.resize(tar_mask, size) | |
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8) | |
pipe_prior_output = redux(Image.fromarray(masked_ref_image)) | |
tar_image = pad_to_square(tar_image, pad_value=255) | |
H2, W2 = tar_image.shape[0], tar_image.shape[1] | |
tar_image = cv2.resize(tar_image, size) | |
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1) | |
tar_mask = np.stack([tar_mask,tar_mask,tar_mask],-1) | |
mask_black = np.ones_like(tar_image) * 0 | |
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1) | |
diptych_ref_tar = Image.fromarray(diptych_ref_tar) | |
mask_diptych[mask_diptych == 1] = 255 | |
mask_diptych = Image.fromarray(mask_diptych) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
edited_image = pipe( | |
image=diptych_ref_tar, | |
mask_image=mask_diptych, | |
height=mask_diptych.size[1], | |
width=mask_diptych.size[0], | |
max_sequence_length=512, | |
generator=generator, | |
**pipe_prior_output, | |
).images[0] | |
width, height = edited_image.size | |
left = width // 2 | |
right = width | |
top = 0 | |
bottom = height | |
edited_image = edited_image.crop((left, top, right, bottom)) | |
edited_image = np.array(edited_image) | |
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop)) | |
edited_image = Image.fromarray(edited_image) | |
if ref_mask_option != "Label to Mask": | |
return [edited_image] | |
else: | |
return [return_ref_mask, edited_image] | |
def update_ui(option): | |
if option == "Draw Mask": | |
return gr.update(visible=False), gr.update(visible=True) | |
else: | |
return gr.update(visible=True), gr.update(visible=False) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Insert-Anything") | |
gr.Markdown("### Make sure to select the correct mask button!!") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
base_image = gr.ImageEditor(label="Background Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"), | |
layers = False, | |
interactive=True) | |
base_mask = gr.ImageEditor(label="Background Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False) | |
with gr.Row(): | |
base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option", value="Upload with Mask") | |
with gr.Row(): | |
ref_image = gr.ImageEditor(label="Reference Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"), | |
layers = False, | |
interactive=True) | |
ref_mask = gr.ImageEditor(label="Reference Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False) | |
with gr.Row(): | |
ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask", "Label to Mask"], label="Reference Mask Input Option", value="Upload with Mask") | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Label") | |
with gr.Column(scale=1): | |
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=765, columns=1) | |
with gr.Accordion("Advanced Option", open=True): | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=666) | |
gr.Markdown("### Guidelines") | |
gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.") | |
gr.Markdown(" Label to Mask means generating a mask by simply inputting a label.") | |
run_local_button = gr.Button(value="Run") | |
# #### example ##### | |
num_examples = len(image_list) | |
for i in range(num_examples): | |
with gr.Row(): | |
if i == 0: | |
gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1) | |
gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1) | |
gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1) | |
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1) | |
else: | |
gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="") | |
gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="") | |
gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="") | |
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="") | |
if i < num_examples - 1: | |
gr.HTML("<hr>") | |
# #### example ##### | |
run_local_button.click(fn=run_local, | |
inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt], | |
outputs=[baseline_gallery] | |
) | |
demo.launch() |