Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,252 Bytes
20d069f 50d0879 90b6afe 50d0879 60464bd 50d0879 60464bd 50d0879 60464bd 50d0879 20d069f a65312d 20d069f 90b6afe 47a1b08 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 a19d671 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 72509e7 20d069f a19d671 20d069f 50d0879 20d069f 50d0879 20d069f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import os
import sys
import cv2
import numpy as np
import torch
import gradio as gr
from PIL import Image, ImageFilter, ImageDraw
from huggingface_hub import snapshot_download
from diffusers import FluxFillPipeline, FluxPriorReduxPipeline
import math
from utils.utils import get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask
import os,sys
os.system("python -m pip install -e segment_anything")
os.system("python -m pip install -e GroundingDINO")
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth")
os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth")
import torchvision
from GroundingDINO.groundingdino.util.inference import load_model
from segment_anything import build_sam, SamPredictor
import spaces
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# GroundingDINO config and checkpoint
GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py"
GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swinb_cogcoor.pth"
# Segment-Anything checkpoint
SAM_ENCODER_VERSION = "vit_h"
SAM_CHECKPOINT_PATH = "./sam_vit_h_4b8939.pth"
# Building GroundingDINO inference model
groundingdino_model = load_model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device="cuda")
# Building SAM Model and SAM Predictor
sam = build_sam(checkpoint=SAM_CHECKPOINT_PATH)
sam.to(device="cuda")
sam_predictor = SamPredictor(sam)
def transform_image(image_pil):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image
def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(
pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def get_mask(image, label):
global groundingdino_model, sam_predictor
image_pil = image.convert("RGB")
transformed_image = transform_image(image_pil)
boxes_filt, scores, pred_phrases = get_grounding_output(
groundingdino_model, transformed_image, label
)
size = image_pil.size
# process boxes
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
# nms
nms_idx = torchvision.ops.nms(
boxes_filt, scores, 0.8).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
image = np.array(image_pil)
sam_predictor.set_image(image)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(
boxes_filt, image.shape[:2]).to("cuda")
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
result_mask = masks[0][0].cpu().numpy()
result_mask = Image.fromarray(result_mask)
return result_mask
hf_token = os.getenv("HF_TOKEN")
snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev", local_dir="./FLUX.1-Fill-dev", token=hf_token)
snapshot_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", local_dir="./FLUX.1-Redux-dev", token=hf_token)
snapshot_download(repo_id="WensongSong/Insert-Anything", local_dir="./insertanything_model", token=hf_token)
dtype = torch.bfloat16
size = (768, 768)
pipe = FluxFillPipeline.from_pretrained(
"./FLUX.1-Fill-dev",
torch_dtype=dtype
).to("cuda")
pipe.load_lora_weights(
"./insertanything_model/20250321_steps5000_pytorch_lora_weights.safetensors"
)
redux = FluxPriorReduxPipeline.from_pretrained("./FLUX.1-Redux-dev").to(dtype=dtype).to("cuda")
### example #####
ref_dir='./examples/ref_image'
ref_mask_dir='./examples/ref_mask'
image_dir='./examples/source_image'
image_mask_dir='./examples/source_mask'
ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ]
ref_list.sort()
ref_mask_list=[os.path.join(ref_mask_dir,file) for file in os.listdir(ref_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
ref_mask_list.sort()
image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ]
image_list.sort()
image_mask_list=[os.path.join(image_mask_dir,file) for file in os.listdir(image_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
image_mask_list.sort()
### example #####
@spaces.GPU
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt):
if base_mask_option == "Draw Mask":
tar_image = base_image["background"]
tar_mask = base_image["layers"][0]
else:
tar_image = base_image["background"]
tar_mask = base_mask["background"]
if ref_mask_option == "Draw Mask":
ref_image = reference_image["background"]
ref_mask = reference_image["layers"][0]
elif ref_mask_option == "Upload with Mask":
ref_image = reference_image["background"]
ref_mask = ref_mask["background"]
else:
ref_image = reference_image["background"]
ref_mask = get_mask(ref_image, text_prompt)
tar_image = tar_image.convert("RGB")
tar_mask = tar_mask.convert("L")
ref_image = ref_image.convert("RGB")
ref_mask = ref_mask.convert("L")
return_ref_mask = ref_mask.copy()
tar_image = np.asarray(tar_image)
tar_mask = np.asarray(tar_mask)
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8)
ref_image = np.asarray(ref_image)
ref_mask = np.asarray(ref_mask)
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)
if tar_mask.sum() == 0:
raise gr.Error('No mask for the background image.Please check mask button!')
if ref_mask.sum() == 0:
raise gr.Error('No mask for the reference image.Please check mask button!')
ref_box_yyxx = get_bbox_from_mask(ref_mask)
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)
y1,y2,x1,x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
ref_mask = ref_mask[y1:y2,x1:x2]
ratio = 1.3
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
kernel = np.ones((7, 7), np.uint8)
iterations = 2
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations)
# zome in
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2)
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2) #1.2 1.6
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1,y2,x1,x2 = tar_box_yyxx_crop
old_tar_image = tar_image.copy()
tar_image = tar_image[y1:y2,x1:x2,:]
tar_mask = tar_mask[y1:y2,x1:x2]
H1, W1 = tar_image.shape[0], tar_image.shape[1]
# zome in
tar_mask = pad_to_square(tar_mask, pad_value=0)
tar_mask = cv2.resize(tar_mask, size)
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8)
pipe_prior_output = redux(Image.fromarray(masked_ref_image))
tar_image = pad_to_square(tar_image, pad_value=255)
H2, W2 = tar_image.shape[0], tar_image.shape[1]
tar_image = cv2.resize(tar_image, size)
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1)
tar_mask = np.stack([tar_mask,tar_mask,tar_mask],-1)
mask_black = np.ones_like(tar_image) * 0
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1)
diptych_ref_tar = Image.fromarray(diptych_ref_tar)
mask_diptych[mask_diptych == 1] = 255
mask_diptych = Image.fromarray(mask_diptych)
generator = torch.Generator("cuda").manual_seed(seed)
edited_image = pipe(
image=diptych_ref_tar,
mask_image=mask_diptych,
height=mask_diptych.size[1],
width=mask_diptych.size[0],
max_sequence_length=512,
generator=generator,
**pipe_prior_output,
).images[0]
width, height = edited_image.size
left = width // 2
right = width
top = 0
bottom = height
edited_image = edited_image.crop((left, top, right, bottom))
edited_image = np.array(edited_image)
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop))
edited_image = Image.fromarray(edited_image)
if ref_mask_option != "Label to Mask":
return [edited_image]
else:
return [return_ref_mask, edited_image]
def update_ui(option):
if option == "Draw Mask":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
with gr.Blocks() as demo:
gr.Markdown("# Insert-Anything")
gr.Markdown("### Make sure to select the correct mask button!!")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
base_image = gr.ImageEditor(label="Background Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"),
layers = False,
interactive=True)
base_mask = gr.ImageEditor(label="Background Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False)
with gr.Row():
base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option", value="Upload with Mask")
with gr.Row():
ref_image = gr.ImageEditor(label="Reference Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"),
layers = False,
interactive=True)
ref_mask = gr.ImageEditor(label="Reference Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False)
with gr.Row():
ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask", "Label to Mask"], label="Reference Mask Input Option", value="Upload with Mask")
with gr.Row():
text_prompt = gr.Textbox(label="Label")
with gr.Column(scale=1):
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=765, columns=1)
with gr.Accordion("Advanced Option", open=True):
seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=666)
gr.Markdown("### Guidelines")
gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.")
gr.Markdown(" Label to Mask means generating a mask by simply inputting a label.")
run_local_button = gr.Button(value="Run")
# #### example #####
num_examples = len(image_list)
for i in range(num_examples):
with gr.Row():
if i == 0:
gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1)
gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1)
gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1)
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1)
else:
gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="")
gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="")
gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="")
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="")
if i < num_examples - 1:
gr.HTML("<hr>")
# #### example #####
run_local_button.click(fn=run_local,
inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt],
outputs=[baseline_gallery]
)
demo.launch() |