import os import sys import cv2 import numpy as np import torch import gradio as gr from PIL import Image, ImageFilter, ImageDraw from huggingface_hub import snapshot_download from diffusers import FluxFillPipeline, FluxPriorReduxPipeline import math from utils.utils import get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask import os,sys os.system("python -m pip install -e segment_anything") os.system("python -m pip install -e GroundingDINO") sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) sys.path.append(os.path.join(os.getcwd(), "segment_anything")) os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth") os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth") import torchvision from GroundingDINO.groundingdino.util.inference import load_model from segment_anything import build_sam, SamPredictor import spaces import GroundingDINO.groundingdino.datasets.transforms as T from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # GroundingDINO config and checkpoint GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py" GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swinb_cogcoor.pth" # Segment-Anything checkpoint SAM_ENCODER_VERSION = "vit_h" SAM_CHECKPOINT_PATH = "./sam_vit_h_4b8939.pth" # Building GroundingDINO inference model groundingdino_model = load_model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device="cuda") # Building SAM Model and SAM Predictor sam = build_sam(checkpoint=SAM_CHECKPOINT_PATH) sam.to(device="cuda") sam_predictor = SamPredictor(sam) def transform_image(image_pil): transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image, _ = transform(image_pil, None) # 3, h, w return image def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True): caption = caption.lower() caption = caption.strip() if not caption.endswith("."): caption = caption + "." with torch.no_grad(): outputs = model(image[None], captions=[caption]) logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) logits.shape[0] # filter output logits_filt = logits.clone() boxes_filt = boxes.clone() filt_mask = logits_filt.max(dim=1)[0] > box_threshold logits_filt = logits_filt[filt_mask] # num_filt, 256 boxes_filt = boxes_filt[filt_mask] # num_filt, 4 logits_filt.shape[0] # get phrase tokenlizer = model.tokenizer tokenized = tokenlizer(caption) # build pred pred_phrases = [] scores = [] for logit, box in zip(logits_filt, boxes_filt): pred_phrase = get_phrases_from_posmap( logit > text_threshold, tokenized, tokenlizer) if with_logits: pred_phrases.append( pred_phrase + f"({str(logit.max().item())[:4]})") else: pred_phrases.append(pred_phrase) scores.append(logit.max().item()) return boxes_filt, torch.Tensor(scores), pred_phrases def get_mask(image, label): global groundingdino_model, sam_predictor image_pil = image.convert("RGB") transformed_image = transform_image(image_pil) boxes_filt, scores, pred_phrases = get_grounding_output( groundingdino_model, transformed_image, label ) size = image_pil.size # process boxes H, W = size[1], size[0] for i in range(boxes_filt.size(0)): boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 boxes_filt[i][2:] += boxes_filt[i][:2] boxes_filt = boxes_filt.cpu() # nms nms_idx = torchvision.ops.nms( boxes_filt, scores, 0.8).numpy().tolist() boxes_filt = boxes_filt[nms_idx] pred_phrases = [pred_phrases[idx] for idx in nms_idx] image = np.array(image_pil) sam_predictor.set_image(image) transformed_boxes = sam_predictor.transform.apply_boxes_torch( boxes_filt, image.shape[:2]).to("cuda") masks, _, _ = sam_predictor.predict_torch( point_coords=None, point_labels=None, boxes=transformed_boxes, multimask_output=False, ) result_mask = masks[0][0].cpu().numpy() result_mask = Image.fromarray(result_mask) return result_mask hf_token = os.getenv("HF_TOKEN") snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev", local_dir="./FLUX.1-Fill-dev", token=hf_token) snapshot_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", local_dir="./FLUX.1-Redux-dev", token=hf_token) snapshot_download(repo_id="WensongSong/Insert-Anything", local_dir="./insertanything_model", token=hf_token) dtype = torch.bfloat16 size = (768, 768) pipe = FluxFillPipeline.from_pretrained( "./FLUX.1-Fill-dev", torch_dtype=dtype ).to("cuda") pipe.load_lora_weights( "./insertanything_model/20250321_steps5000_pytorch_lora_weights.safetensors" ) redux = FluxPriorReduxPipeline.from_pretrained("./FLUX.1-Redux-dev").to(dtype=dtype).to("cuda") ### example ##### ref_dir='./examples/ref_image' ref_mask_dir='./examples/ref_mask' image_dir='./examples/source_image' image_mask_dir='./examples/source_mask' ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] ref_list.sort() ref_mask_list=[os.path.join(ref_mask_dir,file) for file in os.listdir(ref_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] ref_mask_list.sort() image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] image_list.sort() image_mask_list=[os.path.join(image_mask_dir,file) for file in os.listdir(image_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] image_mask_list.sort() ### example ##### @spaces.GPU def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt): if base_mask_option == "Draw Mask": tar_image = base_image["background"] tar_mask = base_image["layers"][0] else: tar_image = base_image["background"] tar_mask = base_mask["background"] if ref_mask_option == "Draw Mask": ref_image = reference_image["background"] ref_mask = reference_image["layers"][0] elif ref_mask_option == "Upload with Mask": ref_image = reference_image["background"] ref_mask = ref_mask["background"] else: ref_image = reference_image["background"] ref_mask = get_mask(ref_image, text_prompt) tar_image = tar_image.convert("RGB") tar_mask = tar_mask.convert("L") ref_image = ref_image.convert("RGB") ref_mask = ref_mask.convert("L") return_ref_mask = ref_mask.copy() tar_image = np.asarray(tar_image) tar_mask = np.asarray(tar_mask) tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8) ref_image = np.asarray(ref_image) ref_mask = np.asarray(ref_mask) ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8) if tar_mask.sum() == 0: raise gr.Error('No mask for the background image.Please check mask button!') if ref_mask.sum() == 0: raise gr.Error('No mask for the reference image.Please check mask button!') ref_box_yyxx = get_bbox_from_mask(ref_mask) ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3) y1,y2,x1,x2 = ref_box_yyxx masked_ref_image = masked_ref_image[y1:y2,x1:x2,:] ref_mask = ref_mask[y1:y2,x1:x2] ratio = 1.3 masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False) kernel = np.ones((7, 7), np.uint8) iterations = 2 tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations) # zome in tar_box_yyxx = get_bbox_from_mask(tar_mask) tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2) tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2) #1.2 1.6 tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box y1,y2,x1,x2 = tar_box_yyxx_crop old_tar_image = tar_image.copy() tar_image = tar_image[y1:y2,x1:x2,:] tar_mask = tar_mask[y1:y2,x1:x2] H1, W1 = tar_image.shape[0], tar_image.shape[1] # zome in tar_mask = pad_to_square(tar_mask, pad_value=0) tar_mask = cv2.resize(tar_mask, size) masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8) pipe_prior_output = redux(Image.fromarray(masked_ref_image)) tar_image = pad_to_square(tar_image, pad_value=255) H2, W2 = tar_image.shape[0], tar_image.shape[1] tar_image = cv2.resize(tar_image, size) diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1) tar_mask = np.stack([tar_mask,tar_mask,tar_mask],-1) mask_black = np.ones_like(tar_image) * 0 mask_diptych = np.concatenate([mask_black, tar_mask], axis=1) diptych_ref_tar = Image.fromarray(diptych_ref_tar) mask_diptych[mask_diptych == 1] = 255 mask_diptych = Image.fromarray(mask_diptych) generator = torch.Generator("cuda").manual_seed(seed) edited_image = pipe( image=diptych_ref_tar, mask_image=mask_diptych, height=mask_diptych.size[1], width=mask_diptych.size[0], max_sequence_length=512, generator=generator, **pipe_prior_output, ).images[0] width, height = edited_image.size left = width // 2 right = width top = 0 bottom = height edited_image = edited_image.crop((left, top, right, bottom)) edited_image = np.array(edited_image) edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop)) edited_image = Image.fromarray(edited_image) if ref_mask_option != "Label to Mask": return [edited_image] else: return [return_ref_mask, edited_image] def update_ui(option): if option == "Draw Mask": return gr.update(visible=False), gr.update(visible=True) else: return gr.update(visible=True), gr.update(visible=False) with gr.Blocks() as demo: gr.Markdown("# Insert-Anything") gr.Markdown("### Make sure to select the correct mask button!!") with gr.Row(): with gr.Column(scale=1): with gr.Row(): base_image = gr.ImageEditor(label="Background Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"), layers = False, interactive=True) base_mask = gr.ImageEditor(label="Background Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False) with gr.Row(): base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option", value="Upload with Mask") with gr.Row(): ref_image = gr.ImageEditor(label="Reference Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"), layers = False, interactive=True) ref_mask = gr.ImageEditor(label="Reference Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False) with gr.Row(): ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask", "Label to Mask"], label="Reference Mask Input Option", value="Upload with Mask") with gr.Row(): text_prompt = gr.Textbox(label="Label") with gr.Column(scale=1): baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=765, columns=1) with gr.Accordion("Advanced Option", open=True): seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=666) gr.Markdown("### Guidelines") gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.") gr.Markdown(" Label to Mask means generating a mask by simply inputting a label.") run_local_button = gr.Button(value="Run") # #### example ##### num_examples = len(image_list) for i in range(num_examples): with gr.Row(): if i == 0: gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1) gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1) gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1) gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1) else: gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="") gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="") gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="") gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="") if i < num_examples - 1: gr.HTML("