File size: 5,702 Bytes
10e9b7d
6a38a35
eccf8e4
6a38a35
19bb099
 
7760191
19bb099
 
 
bee5328
211cd46
6a38a35
bee5328
19bb099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7760191
19bb099
 
 
 
 
 
 
 
 
 
7760191
e0cc1b7
 
19bb099
7760191
19bb099
7760191
 
19bb099
 
 
 
 
 
 
7760191
 
19bb099
 
 
e0cc1b7
3ad674f
19bb099
 
 
 
 
 
e0cc1b7
211cd46
9307ac3
c396a92
9307ac3
c396a92
6a38a35
9307ac3
d1c8ce2
 
e0cc1b7
 
b7a3c71
6a38a35
bee5328
9b3df85
9307ac3
 
c396a92
9b3df85
94aca96
9307ac3
de8170e
6a38a35
19bb099
6a38a35
fd5a08b
94aca96
 
bd7cd5b
 
c396a92
41085c3
bd7cd5b
9b3df85
 
3ad674f
c396a92
6a38a35
9307ac3
e0cc1b7
 
6a38a35
 
de8170e
 
 
0e6388c
6a38a35
 
 
 
 
211cd46
9307ac3
 
 
e0cc1b7
 
94aca96
19bb099
0e6b913
e0cc1b7
 
6a38a35
7760191
 
6a38a35
e0cc1b7
de8170e
 
 
9307ac3
 
 
de8170e
 
21325a3
9307ac3
9b3df85
 
21325a3
3ad674f
 
bd7cd5b
3ad674f
6a38a35
19bb099
9307ac3
6a38a35
 
3ad674f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import gradio as gr
import requests
import pandas as pd
from pathlib import Path
import tempfile

from smolagents import CodeAgent, OpenAIServerModel
from smolagents import DuckDuckGoSearchTool, WikipediaSearchTool
from tools import AnswerTool, SpeechToTextTool, ExcelToTextTool

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"


def download_file_if_any(base_api_url: str, task_id: str) -> str | None:
    """
    Try GET /files/{task_id}.
    β€’ On HTTP 200 β†’ save to a temp dir and return local path.
    β€’ On 404 β†’ return None.
    """
    url = f"{base_api_url}/files/{task_id}"
    try:
        resp = requests.get(url, timeout=30)
        if resp.status_code == 404:
            return None
        resp.raise_for_status()
    except requests.exceptions.HTTPError as e:
        raise e

    cdisp = resp.headers.get("content-disposition", "")
    filename = task_id
    if "filename=" in cdisp:
        import re
        m = re.search(r'filename="([^"]+)"', cdisp)
        if m:
            filename = m.group(1)

    tmp_dir = Path(tempfile.gettempdir()) / "gaia_files"
    tmp_dir.mkdir(exist_ok=True)
    file_path = tmp_dir / filename
    with open(file_path, "wb") as f:
        f.write(resp.content)
    return str(file_path)


class BasicAgent:
    def __init__(self):
        model = OpenAIServerModel(model_id="gpt-4o")
        # Tool priority: Wiki β†’ Web β†’ Python REPL (via base tools) β†’ Audio β†’ Excel β†’ Fallback
        tools = [
            WikipediaSearchTool(),
            DuckDuckGoSearchTool(),
            SpeechToTextTool(),
            ExcelToTextTool(),
            AnswerTool(),
        ]
        self.agent = CodeAgent(
            model=model,
            tools=tools,
            add_base_tools=True,            # enable python REPL, calculator, etc.
            max_steps=6,                    # allow up to 6 planning/execution steps
            verbosity_level=0,
            planning_interval=1,
        )

    def __call__(self, question: str, task_id: str = None) -> str:
        prompt = question
        if task_id:
            file_path = download_file_if_any(DEFAULT_API_URL, task_id)
            if file_path:
                prompt += f"\n\n---\nA file was downloaded for this task and saved locally at:\n{file_path}\n---\n"
        return self.agent.run(prompt)


def run_and_submit_all(username):
    if not username:
        return "Please enter your Hugging Face username.", None

    try:
        resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
        if resp.status_code == 429:
            return "Server rate limited the requests. Please wait a moment and try again.", None
        resp.raise_for_status()
        questions = resp.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    agent = BasicAgent()
    results = []
    payload = []
    for q in questions:
        tid = q.get("task_id")
        text = q.get("question")
        if not (tid and text):
            continue
        try:
            ans = agent(text, task_id=tid)
        except Exception as e:
            ans = f"ERROR: {e}"
        results.append({"Task ID": tid, "Question": text, "Answer": ans})
        payload.append({"task_id": tid, "submitted_answer": ans})

    if not payload:
        return "Agent returned no answers.", pd.DataFrame(results)

    submission = {
        "username": username,
        "agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
        "answers": payload,
    }
    try:
        sub_resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60)
        sub_resp.raise_for_status()
        data = sub_resp.json()
        status = (
            f"Submission Successful!\n"
            f"User: {data.get('username')}\n"
            f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n"
            f"Message: {data.get('message')}"
        )
    except Exception as e:
        status = f"Submission Failed: {e}"

    return status, pd.DataFrame(results)


def test_random_question(username):
    if not username:
        return "Please enter your Hugging Face username.", ""
    try:
        q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json()
        question = q.get("question", "")
        ans = BasicAgent()(question, task_id=q.get("task_id"))
        return question, ans
    except Exception as e:
        return f"Error during test: {e}", ""


# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Enter your Hugging Face username.
        2. Use **Test Random Question** to check a single question.
        3. Use **Run Evaluation & Submit All Answers** to evaluate on all questions.
        """
    )

    username_input = gr.Textbox(label="Hugging Face Username", placeholder="your-username")
    run_btn = gr.Button("Run Evaluation & Submit All Answers")
    test_btn = gr.Button("Test Random Question")

    status_out   = gr.Textbox(label="Status / Result", lines=5, interactive=False)
    table_out    = gr.DataFrame(label="Full Results Table", wrap=True)
    question_out = gr.Textbox(label="Random Question", lines=3, interactive=False)
    answer_out   = gr.Textbox(label="Agent Answer", lines=3, interactive=False)

    run_btn.click(fn=run_and_submit_all,  inputs=[username_input], outputs=[status_out, table_out])
    test_btn.click(fn=test_random_question, inputs=[username_input], outputs=[question_out, answer_out])

if __name__ == "__main__":
    demo.launch(debug=True, share=False)