File size: 4,346 Bytes
10e9b7d
6a38a35
eccf8e4
6a38a35
bee5328
0e6b913
b7a3c71
94aca96
bee5328
94aca96
6a38a35
bee5328
e0cc1b7
 
94aca96
 
9307ac3
38c5e1d
94aca96
e0cc1b7
b7a3c71
94aca96
 
 
0e6b913
e0cc1b7
 
 
94aca96
e0cc1b7
 
9307ac3
c396a92
9307ac3
c396a92
94aca96
6a38a35
9307ac3
d1c8ce2
 
e0cc1b7
 
b7a3c71
6a38a35
bee5328
94aca96
 
9307ac3
 
c396a92
94aca96
 
9307ac3
de8170e
6a38a35
e0cc1b7
6a38a35
fd5a08b
94aca96
 
bd7cd5b
 
c396a92
41085c3
94aca96
bd7cd5b
94aca96
 
 
c396a92
6a38a35
9307ac3
e0cc1b7
 
6a38a35
 
de8170e
 
 
0e6388c
6a38a35
 
 
 
 
9307ac3
 
 
e0cc1b7
 
94aca96
 
0e6b913
e0cc1b7
 
6a38a35
94aca96
6a38a35
e0cc1b7
de8170e
 
 
9307ac3
 
 
de8170e
 
21325a3
9307ac3
94aca96
 
21325a3
38c5e1d
 
bd7cd5b
38c5e1d
6a38a35
38c5e1d
9307ac3
6a38a35
 
38c5e1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import gradio as gr
import requests
import pandas as pd

from tools import AnswerTool
from smolagents import CodeAgent, OpenAIServerModel
from smolagents import DuckDuckGoSearchTool, WikipediaSearchTool

# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

class BasicAgent:
    def __init__(self):
        # Initialize CodeAgent with GPT-4o, custom AnswerTool, DuckDuckGo and Wikipedia tools
        model       = OpenAIServerModel(model_id="gpt-4o")
        answer_tool = AnswerTool()
        web_tool    = DuckDuckGoSearchTool()
        wiki_tool   = WikipediaSearchTool()
        self.agent = CodeAgent(
            model=model,
            tools=[answer_tool, web_tool, wiki_tool],
            add_base_tools=True,
            max_steps=2,
            verbosity_level=0
        )

    def __call__(self, question: str) -> str:
        # Run the agent on the question
        return self.agent.run(question)

def run_and_submit_all(username):
    if not username:
        return "Please enter your Hugging Face username.", None

    # 1. Fetch questions
    try:
        resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
        if resp.status_code == 429:
            return "Server rate limited the requests. Please wait a moment and try again.", None
        resp.raise_for_status()
        questions = resp.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # 2. Run agent on all questions
    agent  = BasicAgent()
    results = []
    payload = []
    for q in questions:
        tid  = q.get("task_id")
        text = q.get("question")
        if not (tid and text):
            continue
        try:
            ans = agent(text)
        except Exception as e:
            ans = f"ERROR: {e}"
        results.append({"Task ID": tid, "Question": text, "Answer": ans})
        payload.append({"task_id": tid, "submitted_answer": ans})

    if not payload:
        return "Agent returned no answers.", pd.DataFrame(results)

    # 3. Submit answers
    submission = {
        "username": username,
        "agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
        "answers": payload
    }
    try:
        sub_resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60)
        sub_resp.raise_for_status()
        data = sub_resp.json()
        status = (
            f"Submission Successful!\n"
            f"User: {data.get('username')}\n"
            f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n"
            f"Message: {data.get('message')}"
        )
    except Exception as e:
        status = f"Submission Failed: {e}"

    return status, pd.DataFrame(results)

def test_random_question(username):
    if not username:
        return "Please enter your Hugging Face username.", ""
    try:
        q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json()
        question = q.get("question", "")
        ans      = BasicAgent()(question)
        return question, ans
    except Exception as e:
        return f"Error during test: {e}", ""

# Build Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Enter your Hugging Face username.
        2. Use **Test Random Question** to check a single question.
        3. Use **Run Evaluation & Submit All Answers** to evaluate on all questions.
        """
    )

    username_input = gr.Textbox(label="Hugging Face Username", placeholder="your-username")
    run_btn        = gr.Button("Run Evaluation & Submit All Answers")
    test_btn       = gr.Button("Test Random Question")

    status_out   = gr.Textbox(label="Status / Result", lines=5, interactive=False)
    table_out    = gr.DataFrame(label="Full Results Table", wrap=True)
    question_out = gr.Textbox(label="Random Question", lines=3, interactive=False)
    answer_out   = gr.Textbox(label="Agent Answer", lines=3, interactive=False)

    run_btn.click(fn=run_and_submit_all,  inputs=[username_input], outputs=[status_out, table_out])
    test_btn.click(fn=test_random_question, inputs=[username_input], outputs=[question_out, answer_out])

if __name__ == "__main__":
    demo.launch(debug=True, share=False)