Spaces:
Sleeping
Sleeping
File size: 4,165 Bytes
10e9b7d 6a38a35 eccf8e4 6a38a35 bee5328 0e6b913 b7a3c71 bee5328 e0cc1b7 6a38a35 bee5328 e0cc1b7 02dc956 9f4a3ee 9307ac3 e0cc1b7 b7a3c71 9307ac3 0e6b913 e0cc1b7 02dc956 e0cc1b7 de8170e 9307ac3 c396a92 9307ac3 c396a92 b7a3c71 6a38a35 9307ac3 d1c8ce2 e0cc1b7 b7a3c71 6a38a35 bee5328 9307ac3 e0cc1b7 9307ac3 c396a92 9307ac3 de8170e 6a38a35 e0cc1b7 6a38a35 fd5a08b 9307ac3 bd7cd5b c396a92 41085c3 9307ac3 bd7cd5b 9307ac3 c396a92 6a38a35 9307ac3 e0cc1b7 6a38a35 de8170e 0e6388c 6a38a35 de8170e 9307ac3 e0cc1b7 9307ac3 0e6b913 e0cc1b7 6a38a35 9307ac3 6a38a35 e0cc1b7 de8170e 9307ac3 de8170e 21325a3 9307ac3 bd7cd5b 21325a3 bd7cd5b 6a38a35 9307ac3 6a38a35 02dc956 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import os
import gradio as gr
import requests
import pandas as pd
from tools import AnswerTool
from smolagents import CodeAgent, OpenAIServerModel
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self):
# Initialize CodeAgent with GPT-4o and only the custom AnswerTool
model = OpenAIServerModel(model_id="gpt-4o")
answer_tool = AnswerTool()
self.agent = CodeAgent(
model=model,
tools=[answer_tool],
add_base_tools=False,
max_steps=1,
verbosity_level=0
)
def __call__(self, question: str) -> str:
# Single-step invocation of AnswerTool
return self.agent.run(question)
def run_and_submit_all(username):
# Username provided manually by the user
if not username:
return "Please enter your Hugging Face username.", None
# Fetch questions
try:
resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
if resp.status_code == 429:
return "Server rate limited the requests. Please wait a moment and try again.", None
resp.raise_for_status()
questions = resp.json()
except Exception as e:
return f"Error fetching questions: {e}", None
# Run agent on all questions
agent = BasicAgent()
results = []
payload = []
for q in questions:
tid = q.get('task_id')
text = q.get('question')
if not (tid and text):
continue
try:
ans = agent(text)
except Exception as e:
ans = f"ERROR: {e}"
results.append({'Task ID': tid, 'Question': text, 'Answer': ans})
payload.append({'task_id': tid, 'submitted_answer': ans})
if not payload:
return "Agent returned no answers.", pd.DataFrame(results)
# Submit answers
submission = {
'username': username,
'agent_code': f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
'answers': payload
}
try:
sub_resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60)
sub_resp.raise_for_status()
data = sub_resp.json()
status = (
f"Submission Successful!\n"
f"User: {data.get('username')}\n"
f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n"
f"Message: {data.get('message')}"
)
except Exception as e:
status = f"Submission Failed: {e}"
return status, pd.DataFrame(results)
def test_random_question(username):
if not username:
return "Please enter your Hugging Face username.", ""
try:
q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json()
question = q.get('question', '')
ans = BasicAgent()(question)
return question, ans
except Exception as e:
return f"Error during test: {e}", ""
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Enter your Hugging Face username.
2. Use **Test Random Question** to check a single question.
3. Use **Run Evaluation & Submit All Answers** to evaluate on all questions.
"""
)
username_input = gr.Textbox(label="Hugging Face Username", placeholder="your-username")
run_btn = gr.Button("Run Evaluation & Submit All Answers")
test_btn = gr.Button("Test Random Question")
status_out = gr.Textbox(label="Status / Result", lines=5, interactive=False)
table_out = gr.DataFrame(label="Full Results Table", wrap=True)
question_out = gr.Textbox(label="Random Question", lines=3, interactive=False)
answer_out = gr.Textbox(label="Agent Answer", lines=3, interactive=False)
run_btn.click(fn=run_and_submit_all, inputs=[username_input], outputs=[status_out, table_out])
test_btn.click(fn=test_random_question, inputs=[username_input], outputs=[question_out, answer_out])
if __name__ == "__main__":
demo.launch(debug=True, share=False) |