A newer version of the Gradio SDK is available:
5.29.1
title: DDColor
app_file: gradio_app.py
sdk: gradio
sdk_version: 5.21.0
π¨ DDColor
Official PyTorch implementation of ICCV 2023 Paper "DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders".
Xiaoyang Kang, Tao Yang, Wenqi Ouyang, Peiran Ren, Lingzhi Li, Xuansong Xie
DAMO Academy, Alibaba Group
πͺ DDColor can provide vivid and natural colorization for historical black and white old photos.
π² It can even colorize/recolor landscapes from anime games, transforming your animated scenery into a realistic real-life style! (Image source: Genshin Impact)
News
- [2024-01-28] Support inference via π€ Hugging Face! Thanks @Niels for the suggestion and example code and @Skwara for fixing bug.
- [2024-01-18] Add Replicate demo and API! Thanks @Chenxi.
- [2023-12-13] Release the DDColor-tiny pre-trained model!
- [2023-09-07] Add the Model Zoo and release three pretrained models!
- [2023-05-15] Code release for training and inference!
- [2023-05-05] The online demo is available!
Online Demo
Try our online demos at ModelScope and Replicate.
Methods
In short: DDColor uses multi-scale visual features to optimize learnable color tokens (i.e. color queries) and achieves state-of-the-art performance on automatic image colorization.
Installation
Requirements
- Python >= 3.7
- PyTorch >= 1.7
Installation with conda (recommended)
conda create -n ddcolor python=3.9
conda activate ddcolor
pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
# Install basicsr, only required for training
python3 setup.py develop
Quick Start
Inference Using Local Script (No basicsr
Required)
- Download the pretrained model:
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope')
print('model assets saved to %s' % model_dir)
- Run inference with
python infer.py --model_path ./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt --input ./assets/test_images
or
sh scripts/inference.sh
Inference Using Hugging Face
Load the model via Hugging Face Hub:
from infer_hf import DDColorHF
ddcolor_paper_tiny = DDColorHF.from_pretrained("piddnad/ddcolor_paper_tiny")
ddcolor_paper = DDColorHF.from_pretrained("piddnad/ddcolor_paper")
ddcolor_modelscope = DDColorHF.from_pretrained("piddnad/ddcolor_modelscope")
ddcolor_artistic = DDColorHF.from_pretrained("piddnad/ddcolor_artistic")
Check infer_hf.py
for the details of the inference, or directly perform model inference by running:
python infer_hf.py --model_name ddcolor_modelscope --input ./assets/test_images
# model_name: [ddcolor_paper | ddcolor_modelscope | ddcolor_artistic | ddcolor_paper_tiny]
Inference Using ModelScope
- Install modelscope:
pip install modelscope
- Run inference:
import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
img_colorization = pipeline(Tasks.image_colorization, model='damo/cv_ddcolor_image-colorization')
result = img_colorization('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg')
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
This code will automatically download the ddcolor_modelscope
model (see ModelZoo) and performs inference. The model file pytorch_model.pt
can be found in the local path ~/.cache/modelscope/hub/damo
.
Gradio Demo
Install the gradio and other required libraries:
pip install gradio gradio_imageslider timm
Then, you can run the demo with the following command:
python gradio_app.py
Model Zoo
We provide several different versions of pretrained models, please check out Model Zoo.
Train
- Dataset Preparation: Download the ImageNet dataset or create a custom dataset. Use this script to obtain the dataset list file:
python data_list/get_meta_file.py
Download the pretrained weights for ConvNeXt and InceptionV3 and place them in the
pretrain
folder.Specify 'meta_info_file' and other options in
options/train/train_ddcolor.yml
.Start training:
sh scripts/train.sh
ONNX export
Support for ONNX model exports is available.
- Install dependencies:
pip install onnx==1.16.1 onnxruntime==1.19.2 onnxsim==0.4.36
- Usage example:
python export.py
usage: export.py [-h] [--input_size INPUT_SIZE] [--batch_size BATCH_SIZE] --model_path MODEL_PATH [--model_size MODEL_SIZE]
[--decoder_type DECODER_TYPE] [--export_path EXPORT_PATH] [--opset OPSET]
Demo of ONNX export using a ddcolor_paper_tiny
model is available here.
Citation
If our work is helpful for your research, please consider citing:
@inproceedings{kang2023ddcolor,
title={DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders},
author={Kang, Xiaoyang and Yang, Tao and Ouyang, Wenqi and Ren, Peiran and Li, Lingzhi and Xie, Xuansong},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={328--338},
year={2023}
}
Acknowledgments
We thank the authors of BasicSR for the awesome training pipeline.
Xintao Wang, Ke Yu, Kelvin C.K. Chan, Chao Dong and Chen Change Loy. BasicSR: Open Source Image and Video Restoration Toolbox. https://github.com/xinntao/BasicSR, 2020.
Some codes are adapted from ColorFormer, BigColor, ConvNeXt, Mask2Former, and DETR. Thanks for their excellent work!