File size: 7,194 Bytes
624281e 00e6746 624281e 00e6746 624281e 00e6746 624281e 00e6746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
title: DDColor
app_file: gradio_app.py
sdk: gradio
sdk_version: 5.21.0
---
# π¨ DDColor
[](https://arxiv.org/abs/2212.11613)
[](https://huggingface.co/piddnad/DDColor-models)
[](https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary)
[](https://replicate.com/piddnad/ddcolor)

Official PyTorch implementation of ICCV 2023 Paper "DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders".
> Xiaoyang Kang, Tao Yang, Wenqi Ouyang, Peiran Ren, Lingzhi Li, Xuansong Xie
> *DAMO Academy, Alibaba Group*
πͺ DDColor can provide vivid and natural colorization for historical black and white old photos.
<p align="center">
<img src="assets/teaser.png" width="100%">
</p>
π² It can even colorize/recolor landscapes from anime games, transforming your animated scenery into a realistic real-life style! (Image source: Genshin Impact)
<p align="center">
<img src="assets/anime_landscapes.png" width="100%">
</p>
## News
- [2024-01-28] Support inference via π€ Hugging Face! Thanks @[Niels](https://github.com/NielsRogge) for the suggestion and example code and @[Skwara](https://github.com/Skwarson96) for fixing bug.
- [2024-01-18] Add Replicate demo and API! Thanks @[Chenxi](https://github.com/chenxwh).
- [2023-12-13] Release the DDColor-tiny pre-trained model!
- [2023-09-07] Add the Model Zoo and release three pretrained models!
- [2023-05-15] Code release for training and inference!
- [2023-05-05] The online demo is available!
## Online Demo
Try our online demos at [ModelScope](https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary) and [Replicate](https://replicate.com/piddnad/ddcolor).
## Methods
*In short:* DDColor uses multi-scale visual features to optimize **learnable color tokens** (i.e. color queries) and achieves state-of-the-art performance on automatic image colorization.
<p align="center">
<img src="assets/network_arch.jpg" width="100%">
</p>
## Installation
### Requirements
- Python >= 3.7
- PyTorch >= 1.7
### Installation with conda (recommended)
```sh
conda create -n ddcolor python=3.9
conda activate ddcolor
pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
# Install basicsr, only required for training
python3 setup.py develop
```
## Quick Start
### Inference Using Local Script (No `basicsr` Required)
1. Download the pretrained model:
```python
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope')
print('model assets saved to %s' % model_dir)
```
2. Run inference with
```sh
python infer.py --model_path ./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt --input ./assets/test_images
```
or
```sh
sh scripts/inference.sh
```
### Inference Using Hugging Face
Load the model via Hugging Face Hub:
```python
from infer_hf import DDColorHF
ddcolor_paper_tiny = DDColorHF.from_pretrained("piddnad/ddcolor_paper_tiny")
ddcolor_paper = DDColorHF.from_pretrained("piddnad/ddcolor_paper")
ddcolor_modelscope = DDColorHF.from_pretrained("piddnad/ddcolor_modelscope")
ddcolor_artistic = DDColorHF.from_pretrained("piddnad/ddcolor_artistic")
```
Check `infer_hf.py` for the details of the inference, or directly perform model inference by running:
```sh
python infer_hf.py --model_name ddcolor_modelscope --input ./assets/test_images
# model_name: [ddcolor_paper | ddcolor_modelscope | ddcolor_artistic | ddcolor_paper_tiny]
```
### Inference Using ModelScope
1. Install modelscope:
```sh
pip install modelscope
```
2. Run inference:
```python
import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
img_colorization = pipeline(Tasks.image_colorization, model='damo/cv_ddcolor_image-colorization')
result = img_colorization('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg')
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
```
This code will automatically download the `ddcolor_modelscope` model (see [ModelZoo](#model-zoo)) and performs inference. The model file `pytorch_model.pt` can be found in the local path `~/.cache/modelscope/hub/damo`.
### Gradio Demo
Install the gradio and other required libraries:
```sh
pip install gradio gradio_imageslider timm
```
Then, you can run the demo with the following command:
```sh
python gradio_app.py
```
## Model Zoo
We provide several different versions of pretrained models, please check out [Model Zoo](MODEL_ZOO.md).
## Train
1. Dataset Preparation: Download the [ImageNet](https://www.image-net.org/) dataset or create a custom dataset. Use this script to obtain the dataset list file:
```sh
python data_list/get_meta_file.py
```
2. Download the pretrained weights for [ConvNeXt](https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth) and [InceptionV3](https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth) and place them in the `pretrain` folder.
3. Specify 'meta_info_file' and other options in `options/train/train_ddcolor.yml`.
4. Start training:
```sh
sh scripts/train.sh
```
## ONNX export
Support for ONNX model exports is available.
1. Install dependencies:
```sh
pip install onnx==1.16.1 onnxruntime==1.19.2 onnxsim==0.4.36
```
2. Usage example:
```sh
python export.py
usage: export.py [-h] [--input_size INPUT_SIZE] [--batch_size BATCH_SIZE] --model_path MODEL_PATH [--model_size MODEL_SIZE]
[--decoder_type DECODER_TYPE] [--export_path EXPORT_PATH] [--opset OPSET]
```
Demo of ONNX export using a `ddcolor_paper_tiny` model is available [here](notebooks/colorization_pipeline_onnxruntime.ipynb).
## Citation
If our work is helpful for your research, please consider citing:
```
@inproceedings{kang2023ddcolor,
title={DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders},
author={Kang, Xiaoyang and Yang, Tao and Ouyang, Wenqi and Ren, Peiran and Li, Lingzhi and Xie, Xuansong},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={328--338},
year={2023}
}
```
## Acknowledgments
We thank the authors of BasicSR for the awesome training pipeline.
> Xintao Wang, Ke Yu, Kelvin C.K. Chan, Chao Dong and Chen Change Loy. BasicSR: Open Source Image and Video Restoration Toolbox. https://github.com/xinntao/BasicSR, 2020.
Some codes are adapted from [ColorFormer](https://github.com/jixiaozhong/ColorFormer), [BigColor](https://github.com/KIMGEONUNG/BigColor), [ConvNeXt](https://github.com/facebookresearch/ConvNeXt), [Mask2Former](https://github.com/facebookresearch/Mask2Former), and [DETR](https://github.com/facebookresearch/detr). Thanks for their excellent work!
|