ChatWithPDF / app.py
Shivamsinghtomar78's picture
Update app.py
74f59a6 verified
import streamlit as st
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from pydantic import BaseModel, Field
from typing import List
import os
import time
from datetime import datetime
import PyPDF2
from fpdf import FPDF
from docx import Document
import io
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
HUGGINGFACE_ACCESS_TOKEN = os.environ.get("HUGGINGFACE_ACCESS_TOKEN")
if not GOOGLE_API_KEY:
st.error("❌ GOOGLE_API_KEY not found.")
st.stop()
if not HUGGINGFACE_ACCESS_TOKEN:
st.error("❌ HUGGINGFACE_ACCESS_TOKEN not found.")
st.stop()
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
google_api_key=GOOGLE_API_KEY,
convert_system_message_to_human=True
)
embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=HUGGINGFACE_ACCESS_TOKEN,
model_name="BAAI/bge-small-en-v1.5"
)
class KeyPoint(BaseModel):
point: str = Field(description="A key point extracted from the document.")
class Summary(BaseModel):
summary: str = Field(description="A brief summary of the document content.")
class DocumentAnalysis(BaseModel):
key_points: List[KeyPoint] = Field(description="List of key points from the document.")
summary: Summary = Field(description="Summary of the document.")
parser = PydanticOutputParser(pydantic_object=DocumentAnalysis)
prompt_template = """
Analyze the following text and extract key points and a summary.
{format_instructions}
Text: {text}
"""
prompt = PromptTemplate(
template=prompt_template,
input_variables=["text"],
partial_variables={"format_instructions": parser.get_format_instructions()}
)
chain = LLMChain(llm=llm, prompt=prompt, output_parser=parser)
def analyze_text_structured(text):
return chain.run(text=text)
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
return "".join(page.extract_text() for page in pdf_reader.pages)
def json_to_text(analysis):
text_output = "=== Summary ===\n" + f"{analysis.summary.summary}\n\n"
text_output += "=== Key Points ===\n"
for i, key_point in enumerate(analysis.key_points, start=1):
text_output += f"{i}. {key_point.point}\n"
return text_output
def create_pdf_report(analysis):
pdf = FPDF()
pdf.add_page()
pdf.set_font('Helvetica', '', 12)
pdf.cell(200, 10, txt="PDF Analysis Report", ln=True, align='C')
pdf.cell(200, 10, txt=f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.multi_cell(0, 10, txt=json_to_text(analysis))
pdf_bytes = io.BytesIO()
pdf.output(pdf_bytes, dest='S')
pdf_bytes.seek(0)
return pdf_bytes.getvalue()
def create_word_report(analysis):
doc = Document()
doc.add_heading('PDF Analysis Report', 0)
doc.add_paragraph(f'Generated on: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')
doc.add_heading('Analysis', level=1)
doc.add_paragraph(json_to_text(analysis))
docx_bytes = io.BytesIO()
doc.save(docx_bytes)
docx_bytes.seek(0)
return docx_bytes.getvalue()
st.set_page_config(page_title="Chat With PDF", page_icon="πŸ“„")
def local_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@400;700&family=Orbitron:wght@400;700&display=swap');
body {
font-family: 'Montserrat', sans-serif;
background: linear-gradient(135deg, #0A0A0A 0%, #1A1A1A 100%);
color: #FFFFFF;
}
h1, h2, h3 { font-family: 'Orbitron', sans-serif; }
.main-header {
position: fixed;
top: 0;
width: 100%;
text-align: center;
padding: 1.5rem;
background: rgba(0, 0, 0, 0.8);
border-bottom: 2px solid #00FFFF;
box-shadow: 0 0 15px #00FFFF;
animation: slideInLeft 0.5s ease-in;
z-index: 1000;
}
.flag-stripe {
height: 6px;
background: linear-gradient(90deg, #FF00FF 33%, #00FFFF 66%, #00FF00 100%);
animation: slideInLeft 0.5s ease-in;
}
.stTextInput > div > input {
border-radius: 20px;
padding: 0.8rem 2rem;
background: rgba(0, 0, 0, 0.7);
border: 2px solid #00FFFF;
color: #FFFFFF;
transition: all 0.3s ease;
}
.stTextInput > div > input:focus {
border-color: #FF00FF;
box-shadow: 0 0 15px #FF00FF;
}
.stButton > button {
border-radius: 20px;
padding: 0.6rem 1.5rem;
background: linear-gradient(135deg, #00FFFF, #FF00FF);
color: #000000;
border: none;
font-weight: bold;
text-transform: uppercase;
box-shadow: 0 0 10px #00FFFF;
transition: all 0.3s ease;
}
.stButton > button:hover {
transform: scale(1.05);
box-shadow: 0 0 20px #FF00FF;
}
.card {
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border-radius: 15px;
border: 1px solid rgba(0, 255, 255, 0.3);
padding: 1.5rem;
margin: 1rem 0;
transition: all 0.3s ease;
}
.card:hover {
transform: translateY(-5px);
box-shadow: 0 0 20px #FF00FF;
}
.footer {
position: fixed;
bottom: 0;
width: 100%;
background: rgba(0, 0, 0, 0.9);
padding: 1rem;
text-align: center;
border-top: 2px solid #00FFFF;
animation: fadeIn 0.5s ease-in;
}
@keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } }
@keyframes slideInLeft { from { transform: translateX(-100%); } to { transform: translateX(0); } }
</style>
""", unsafe_allow_html=True)
local_css()
if "current_file" not in st.session_state:
st.session_state.current_file = None
if "pdf_summary" not in st.session_state:
st.session_state.pdf_summary = None
if "analysis_time" not in st.session_state:
st.session_state.analysis_time = 0
if "pdf_report" not in st.session_state:
st.session_state.pdf_report = None
if "word_report" not in st.session_state:
st.session_state.word_report = None
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "messages" not in st.session_state:
st.session_state.messages = []
st.markdown('<div class="main-header">', unsafe_allow_html=True)
st.markdown('<div class="flag-stripe"></div>', unsafe_allow_html=True)
st.title("πŸ“„ Chat With PDF")
st.caption("Your AI-powered Document Analyzer")
st.markdown('</div>', unsafe_allow_html=True)
with st.container():
st.markdown('<div class="card animate-fadeIn">', unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
if uploaded_file is not None:
if st.session_state.current_file != uploaded_file.name:
st.session_state.current_file = uploaded_file.name
st.session_state.pdf_summary = None
st.session_state.pdf_report = None
st.session_state.word_report = None
st.session_state.vectorstore = None
st.session_state.messages = []
text = extract_text_from_pdf(uploaded_file)
if st.button("Analyze Text"):
start_time = time.time()
with st.spinner("Analyzing..."):
analysis = analyze_text_structured(text)
st.session_state.pdf_summary = analysis
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
st.session_state.vectorstore = FAISS.from_texts(chunks, embeddings)
st.session_state.pdf_report = create_pdf_report(analysis)
st.session_state.word_report = create_word_report(analysis)
st.session_state.analysis_time = time.time() - start_time
st.subheader("Analysis Results")
st.text(json_to_text(analysis))
col1, col2 = st.columns(2)
with col1:
st.download_button(
label="Download PDF Report",
data=st.session_state.pdf_report,
file_name="analysis_report.pdf",
mime="application/pdf"
)
with col2:
st.download_button(
label="Download Word Report",
data=st.session_state.word_report,
file_name="analysis_report.docx",
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
)
st.markdown('</div>', unsafe_allow_html=True)
if "vectorstore" in st.session_state and st.session_state.vectorstore is not None:
st.subheader("Chat with the Document")
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask a question about the document"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
docs = st.session_state.vectorstore.similarity_search(prompt, k=3)
context = "\n".join([doc.page_content for doc in docs])
messages = [
HumanMessage(content=f"You are a helpful assistant. Answer the question based on the provided document context.\n\nContext: {context}\n\nQuestion: {prompt}")
]
response = llm.invoke(messages)
st.markdown(response.content)
st.session_state.messages.append({"role": "assistant", "content": response.content})
st.markdown(
f'<div class="footer">Analysis Time: {st.session_state.analysis_time:.1f}s | Powered by Google Generative AI</div>',
unsafe_allow_html=True
)