Spaces:
Running
Running
File size: 10,713 Bytes
0a96858 74f59a6 0a96858 084e167 8e37b2e 084e167 8e37b2e 084e167 74f59a6 084e167 0a96858 084e167 0a96858 084e167 0a96858 084e167 0a96858 084e167 0a96858 084e167 0a96858 084e167 0a96858 084e167 64a73c3 084e167 0a96858 084e167 64a73c3 0a96858 084e167 0a96858 084e167 0a96858 084e167 0a96858 084e167 0a96858 084e167 8e37b2e 0a96858 084e167 0a96858 084e167 0a96858 084e167 0a96858 74f59a6 0a96858 084e167 0a96858 084e167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import streamlit as st
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from pydantic import BaseModel, Field
from typing import List
import os
import time
from datetime import datetime
import PyPDF2
from fpdf import FPDF
from docx import Document
import io
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
HUGGINGFACE_ACCESS_TOKEN = os.environ.get("HUGGINGFACE_ACCESS_TOKEN")
if not GOOGLE_API_KEY:
st.error("β GOOGLE_API_KEY not found.")
st.stop()
if not HUGGINGFACE_ACCESS_TOKEN:
st.error("β HUGGINGFACE_ACCESS_TOKEN not found.")
st.stop()
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
google_api_key=GOOGLE_API_KEY,
convert_system_message_to_human=True
)
embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=HUGGINGFACE_ACCESS_TOKEN,
model_name="BAAI/bge-small-en-v1.5"
)
class KeyPoint(BaseModel):
point: str = Field(description="A key point extracted from the document.")
class Summary(BaseModel):
summary: str = Field(description="A brief summary of the document content.")
class DocumentAnalysis(BaseModel):
key_points: List[KeyPoint] = Field(description="List of key points from the document.")
summary: Summary = Field(description="Summary of the document.")
parser = PydanticOutputParser(pydantic_object=DocumentAnalysis)
prompt_template = """
Analyze the following text and extract key points and a summary.
{format_instructions}
Text: {text}
"""
prompt = PromptTemplate(
template=prompt_template,
input_variables=["text"],
partial_variables={"format_instructions": parser.get_format_instructions()}
)
chain = LLMChain(llm=llm, prompt=prompt, output_parser=parser)
def analyze_text_structured(text):
return chain.run(text=text)
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
return "".join(page.extract_text() for page in pdf_reader.pages)
def json_to_text(analysis):
text_output = "=== Summary ===\n" + f"{analysis.summary.summary}\n\n"
text_output += "=== Key Points ===\n"
for i, key_point in enumerate(analysis.key_points, start=1):
text_output += f"{i}. {key_point.point}\n"
return text_output
def create_pdf_report(analysis):
pdf = FPDF()
pdf.add_page()
pdf.set_font('Helvetica', '', 12)
pdf.cell(200, 10, txt="PDF Analysis Report", ln=True, align='C')
pdf.cell(200, 10, txt=f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.multi_cell(0, 10, txt=json_to_text(analysis))
pdf_bytes = io.BytesIO()
pdf.output(pdf_bytes, dest='S')
pdf_bytes.seek(0)
return pdf_bytes.getvalue()
def create_word_report(analysis):
doc = Document()
doc.add_heading('PDF Analysis Report', 0)
doc.add_paragraph(f'Generated on: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')
doc.add_heading('Analysis', level=1)
doc.add_paragraph(json_to_text(analysis))
docx_bytes = io.BytesIO()
doc.save(docx_bytes)
docx_bytes.seek(0)
return docx_bytes.getvalue()
st.set_page_config(page_title="Chat With PDF", page_icon="π")
def local_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@400;700&family=Orbitron:wght@400;700&display=swap');
body {
font-family: 'Montserrat', sans-serif;
background: linear-gradient(135deg, #0A0A0A 0%, #1A1A1A 100%);
color: #FFFFFF;
}
h1, h2, h3 { font-family: 'Orbitron', sans-serif; }
.main-header {
position: fixed;
top: 0;
width: 100%;
text-align: center;
padding: 1.5rem;
background: rgba(0, 0, 0, 0.8);
border-bottom: 2px solid #00FFFF;
box-shadow: 0 0 15px #00FFFF;
animation: slideInLeft 0.5s ease-in;
z-index: 1000;
}
.flag-stripe {
height: 6px;
background: linear-gradient(90deg, #FF00FF 33%, #00FFFF 66%, #00FF00 100%);
animation: slideInLeft 0.5s ease-in;
}
.stTextInput > div > input {
border-radius: 20px;
padding: 0.8rem 2rem;
background: rgba(0, 0, 0, 0.7);
border: 2px solid #00FFFF;
color: #FFFFFF;
transition: all 0.3s ease;
}
.stTextInput > div > input:focus {
border-color: #FF00FF;
box-shadow: 0 0 15px #FF00FF;
}
.stButton > button {
border-radius: 20px;
padding: 0.6rem 1.5rem;
background: linear-gradient(135deg, #00FFFF, #FF00FF);
color: #000000;
border: none;
font-weight: bold;
text-transform: uppercase;
box-shadow: 0 0 10px #00FFFF;
transition: all 0.3s ease;
}
.stButton > button:hover {
transform: scale(1.05);
box-shadow: 0 0 20px #FF00FF;
}
.card {
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border-radius: 15px;
border: 1px solid rgba(0, 255, 255, 0.3);
padding: 1.5rem;
margin: 1rem 0;
transition: all 0.3s ease;
}
.card:hover {
transform: translateY(-5px);
box-shadow: 0 0 20px #FF00FF;
}
.footer {
position: fixed;
bottom: 0;
width: 100%;
background: rgba(0, 0, 0, 0.9);
padding: 1rem;
text-align: center;
border-top: 2px solid #00FFFF;
animation: fadeIn 0.5s ease-in;
}
@keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } }
@keyframes slideInLeft { from { transform: translateX(-100%); } to { transform: translateX(0); } }
</style>
""", unsafe_allow_html=True)
local_css()
if "current_file" not in st.session_state:
st.session_state.current_file = None
if "pdf_summary" not in st.session_state:
st.session_state.pdf_summary = None
if "analysis_time" not in st.session_state:
st.session_state.analysis_time = 0
if "pdf_report" not in st.session_state:
st.session_state.pdf_report = None
if "word_report" not in st.session_state:
st.session_state.word_report = None
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "messages" not in st.session_state:
st.session_state.messages = []
st.markdown('<div class="main-header">', unsafe_allow_html=True)
st.markdown('<div class="flag-stripe"></div>', unsafe_allow_html=True)
st.title("π Chat With PDF")
st.caption("Your AI-powered Document Analyzer")
st.markdown('</div>', unsafe_allow_html=True)
with st.container():
st.markdown('<div class="card animate-fadeIn">', unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
if uploaded_file is not None:
if st.session_state.current_file != uploaded_file.name:
st.session_state.current_file = uploaded_file.name
st.session_state.pdf_summary = None
st.session_state.pdf_report = None
st.session_state.word_report = None
st.session_state.vectorstore = None
st.session_state.messages = []
text = extract_text_from_pdf(uploaded_file)
if st.button("Analyze Text"):
start_time = time.time()
with st.spinner("Analyzing..."):
analysis = analyze_text_structured(text)
st.session_state.pdf_summary = analysis
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
st.session_state.vectorstore = FAISS.from_texts(chunks, embeddings)
st.session_state.pdf_report = create_pdf_report(analysis)
st.session_state.word_report = create_word_report(analysis)
st.session_state.analysis_time = time.time() - start_time
st.subheader("Analysis Results")
st.text(json_to_text(analysis))
col1, col2 = st.columns(2)
with col1:
st.download_button(
label="Download PDF Report",
data=st.session_state.pdf_report,
file_name="analysis_report.pdf",
mime="application/pdf"
)
with col2:
st.download_button(
label="Download Word Report",
data=st.session_state.word_report,
file_name="analysis_report.docx",
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
)
st.markdown('</div>', unsafe_allow_html=True)
if "vectorstore" in st.session_state and st.session_state.vectorstore is not None:
st.subheader("Chat with the Document")
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask a question about the document"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
docs = st.session_state.vectorstore.similarity_search(prompt, k=3)
context = "\n".join([doc.page_content for doc in docs])
messages = [
HumanMessage(content=f"You are a helpful assistant. Answer the question based on the provided document context.\n\nContext: {context}\n\nQuestion: {prompt}")
]
response = llm.invoke(messages)
st.markdown(response.content)
st.session_state.messages.append({"role": "assistant", "content": response.content})
st.markdown(
f'<div class="footer">Analysis Time: {st.session_state.analysis_time:.1f}s | Powered by Google Generative AI</div>',
unsafe_allow_html=True
) |