import streamlit as st from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.messages import HumanMessage from langchain_core.output_parsers import PydanticOutputParser from langchain_core.prompts import PromptTemplate from langchain.chains import LLMChain from pydantic import BaseModel, Field from typing import List import os import time from datetime import datetime import PyPDF2 from fpdf import FPDF from docx import Document import io from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings from langchain_community.vectorstores import FAISS from langchain_text_splitters import RecursiveCharacterTextSplitter GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY") HUGGINGFACE_ACCESS_TOKEN = os.environ.get("HUGGINGFACE_ACCESS_TOKEN") if not GOOGLE_API_KEY: st.error("❌ GOOGLE_API_KEY not found.") st.stop() if not HUGGINGFACE_ACCESS_TOKEN: st.error("❌ HUGGINGFACE_ACCESS_TOKEN not found.") st.stop() llm = ChatGoogleGenerativeAI( model="gemini-1.5-pro", google_api_key=GOOGLE_API_KEY, convert_system_message_to_human=True ) embeddings = HuggingFaceInferenceAPIEmbeddings( api_key=HUGGINGFACE_ACCESS_TOKEN, model_name="BAAI/bge-small-en-v1.5" ) class KeyPoint(BaseModel): point: str = Field(description="A key point extracted from the document.") class Summary(BaseModel): summary: str = Field(description="A brief summary of the document content.") class DocumentAnalysis(BaseModel): key_points: List[KeyPoint] = Field(description="List of key points from the document.") summary: Summary = Field(description="Summary of the document.") parser = PydanticOutputParser(pydantic_object=DocumentAnalysis) prompt_template = """ Analyze the following text and extract key points and a summary. {format_instructions} Text: {text} """ prompt = PromptTemplate( template=prompt_template, input_variables=["text"], partial_variables={"format_instructions": parser.get_format_instructions()} ) chain = LLMChain(llm=llm, prompt=prompt, output_parser=parser) def analyze_text_structured(text): return chain.run(text=text) def extract_text_from_pdf(pdf_file): pdf_reader = PyPDF2.PdfReader(pdf_file) return "".join(page.extract_text() for page in pdf_reader.pages) def json_to_text(analysis): text_output = "=== Summary ===\n" + f"{analysis.summary.summary}\n\n" text_output += "=== Key Points ===\n" for i, key_point in enumerate(analysis.key_points, start=1): text_output += f"{i}. {key_point.point}\n" return text_output def create_pdf_report(analysis): pdf = FPDF() pdf.add_page() pdf.set_font('Helvetica', '', 12) pdf.cell(200, 10, txt="PDF Analysis Report", ln=True, align='C') pdf.cell(200, 10, txt=f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C') pdf.multi_cell(0, 10, txt=json_to_text(analysis)) pdf_bytes = io.BytesIO() pdf.output(pdf_bytes, dest='S') pdf_bytes.seek(0) return pdf_bytes.getvalue() def create_word_report(analysis): doc = Document() doc.add_heading('PDF Analysis Report', 0) doc.add_paragraph(f'Generated on: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}') doc.add_heading('Analysis', level=1) doc.add_paragraph(json_to_text(analysis)) docx_bytes = io.BytesIO() doc.save(docx_bytes) docx_bytes.seek(0) return docx_bytes.getvalue() st.set_page_config(page_title="Chat With PDF", page_icon="📄") def local_css(): st.markdown(""" """, unsafe_allow_html=True) local_css() if "current_file" not in st.session_state: st.session_state.current_file = None if "pdf_summary" not in st.session_state: st.session_state.pdf_summary = None if "analysis_time" not in st.session_state: st.session_state.analysis_time = 0 if "pdf_report" not in st.session_state: st.session_state.pdf_report = None if "word_report" not in st.session_state: st.session_state.word_report = None if "vectorstore" not in st.session_state: st.session_state.vectorstore = None if "messages" not in st.session_state: st.session_state.messages = [] st.markdown('