Test_Magus / agent8.py
SergeyO7's picture
Rename agent.py to agent8.py
c7b45bd verified
from smolagents import CodeAgent, LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import pandas as pd
from typing import Optional
from token_bucket import Limiter, MemoryStorage
import yaml
from PIL import Image, ImageOps
import requests
from io import BytesIO
from markdownify import markdownify
import whisper
import time
import shutil
import traceback
#@tool
#def GoogleSearchTool(query: str) -> str:
# """Tool for performing Google searches using Custom Search JSON API
# Args:
# query (str): Search query string
# Returns:
# str: Formatted search results
# """
# api_key = os.environ.get("GOOGLE_API_KEY")
# cse_id = os.environ.get("GOOGLE_CSE_ID")
# if not api_key or not cse_id:
# raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
# url = "https://www.googleapis.com/customsearch/v1"
# params = {
# "key": api_key,
# "cx": cse_id,
# "q": query,
# "num": 5 # Number of results to return
# }
# try:
# response = requests.get(url, params=params)
# response.raise_for_status()
# results = response.json().get("items", [])
# return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
# except Exception as e:
# return f"Error performing Google search: {str(e)}"
from langchain_community.document_loaders import ArxivLoader
@tool
def search_arxiv(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query.
Returns:
str: Formatted search results
"""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arxiv_results": formatted_search_docs}
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
output_type = "string"
def forward(self, url: str) -> str:
try:
response = requests.get(url, timeout=50)
response.raise_for_status()
markdown_content = markdownify(response.text).strip()
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
from smolagents.utils import truncate_content
return truncate_content(markdown_content, 10000)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except requests.exceptions.RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def __init__(self, *args, **kwargs):
self.is_initialized = False
class DownloadTaskAttachmentTool(Tool):
name = "download_file"
description = "Downloads the file attached to the task ID and returns the local file path. Supports Excel (.xlsx), image (.png, .jpg), audio (.mp3), PDF (.pdf), and Python (.py) files."
inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}}
output_type = "string"
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def __init__(self, rate_limiter: Optional[Limiter] = None, default_api_url: str = DEFAULT_API_URL, *args, **kwargs):
self.is_initialized = False
self.rate_limiter = rate_limiter
self.default_api_url = default_api_url
def forward(self, task_id: str) -> str:
file_url = f"{self.default_api_url}/files/{task_id}"
print(f"Downloading file for task ID {task_id} from {file_url}...")
try:
if self.rate_limiter:
while not self.rate_limiter.consume(1):
print(f"Rate limit reached for downloading file for task {task_id}. Waiting...")
time.sleep(4) # Assuming 15 RPM
response = requests.get(file_url, stream=True, timeout=50)
response.raise_for_status()
# Determine file extension based on Content-Type
content_type = response.headers.get('Content-Type', '').lower()
if 'image/png' in content_type:
extension = '.png'
elif 'image/jpeg' in content_type:
extension = '.jpg'
elif 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' in content_type:
extension = '.xlsx'
elif 'audio/mpeg' in content_type:
extension = '.mp3'
elif 'application/pdf' in content_type:
extension = '.pdf'
elif 'text/x-python' in content_type:
extension = '.py'
else:
return f"Error: Unsupported file type {content_type} for task {task_id}. Try using visit_webpage or web_search if the content is online."
local_file_path = f"downloads/{task_id}{extension}"
os.makedirs("downloads", exist_ok=True)
with open(local_file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"File downloaded successfully: {local_file_path}")
return local_file_path
except requests.exceptions.HTTPError as e:
if e.response.status_code == 429:
return f"Error: Rate limit exceeded for task {task_id}. Try again later."
return f"Error downloading file for task {task_id}: {str(e)}"
except requests.exceptions.RequestException as e:
return f"Error downloading file for task {task_id}: {str(e)}"
class SpeechToTextTool(Tool):
name = "speech_to_text"
description = (
"Converts an audio file to text using OpenAI Whisper."
)
inputs = {
"audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
}
output_type = "string"
def __init__(self):
super().__init__()
self.model = whisper.load_model("base")
def forward(self, audio_path: str) -> str:
if not os.path.exists(audio_path):
return f"Error: File not found at {audio_path}"
result = self.model.transcribe(audio_path)
return result.get("text", "")
class ExcelReaderTool(Tool):
name = "excel_reader"
description = """
This tool reads and processes Excel files (.xlsx, .xls).
It can extract data, calculate statistics, and perform data analysis on spreadsheets.
"""
inputs = {
"excel_path": {
"type": "string"
,
"description": "The path to the Excel file to read",
},
"sheet_name": {
"type": "string",
"description": "The name of the sheet to read (optional, defaults to first sheet)",
"nullable": True
}
}
output_type = "string"
def forward(self, excel_path: str, sheet_name: str = None) -> str:
"""
Reads and processes the given Excel file.
"""
try:
# Check if the file exists
if not os.path.exists(excel_path):
return f"Error: Excel file not found at {excel_path}"
import pandas as pd
# Read the Excel file
if sheet_name:
df = pd.read_excel(excel_path, sheet_name=sheet_name)
else:
df = pd.read_excel(excel_path)
# Get basic info about the data
info = {
"shape": df.shape,
"columns": list(df.columns),
"dtypes": df.dtypes.to_dict(),
"head": df.head(5).to_dict()
}
# Return formatted info
result = f"Excel file: {excel_path}\n"
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
result += "Columns:\n"
for col in info['columns']:
result += f"- {col} ({info['dtypes'].get(col)})\n"
result += "\nPreview (first 5 rows):\n"
result += df.head(5).to_string()
return result
except Exception as e:
return f"Error reading Excel file: {str(e)}"
class PythonCodeReaderTool(Tool):
name = "read_python_code"
description = "Reads a Python (.py) file and returns its content as a string."
inputs = {
"file_path": {"type": "string", "description": "The path to the Python file to read"}
}
output_type = "string"
def forward(self, file_path: str) -> str:
try:
if not os.path.exists(file_path):
return f"Error: Python file not found at {file_path}"
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
except Exception as e:
return f"Error reading Python file: {str(e)}"
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
#from smolagents.tools import DuckDuckGoSearchException # Replace with the actual exception if different
class RetryDuckDuckGoSearchTool(DuckDuckGoSearchTool):
@retry(
stop=stop_after_attempt(3), # Retry up to 3 times
wait=wait_exponential(multiplier=1, min=4, max=10), # Wait 4s, 8s, then 10s
retry=retry_if_exception_type(Exception) # Retry on any exception
)
def forward(self, query: str) -> str:
return super().forward(query)
class MagAgent:
def __init__(self, rate_limiter: Optional[Limiter] = None):
"""Initialize the MagAgent with search tools."""
self.rate_limiter = rate_limiter
print("Initializing MagAgent with search tools...")
model = LiteLLMModel(
model_id="gemini/gemini-2.0-flash",
api_key= os.environ.get("GEMINI_KEY"),
max_tokens=8192
)
# model = LiteLLMModel(
# model_id="gemini/gemini-1.5-flash", # Use standard multimodal model
# api_key=os.environ.get("GEMINI_KEY"),
# max_tokens=8192,
# api_base="https://generativelanguage.googleapis.com/v1beta" # Correct endpoint
# )
# Load prompt templates
# with open("prompts.yaml", 'r') as stream:
# prompt_templates = yaml.safe_load(stream)
# Initialize rate limiter for DuckDuckGoSearchTool
search_rate_limiter = Limiter(rate=10/60, capacity=10, storage=MemoryStorage()) if not rate_limiter else rate_limiter
self.agent = CodeAgent(
model= model,
tools=[
DownloadTaskAttachmentTool(rate_limiter=rate_limiter),
RetryDuckDuckGoSearchTool(),
WikipediaSearchTool(),
SpeechToTextTool(),
ExcelReaderTool(),
VisitWebpageTool(),
PythonCodeReaderTool(),
search_arxiv,
# PNG2FENTool,
# ChessEngineTool(),
# GoogleSearchTool,
# ImageAnalysisTool,
],
verbosity_level=2,
# prompt_templates=prompt_templates,
add_base_tools=False,
max_steps=20
)
print("MagAgent initialized.")
async def __call__(self, question: str, task_id: str) -> str:
"""Process a question asynchronously using the MagAgent."""
print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}")
try:
if self.rate_limiter:
while not self.rate_limiter.consume(1):
print(f"Rate limit reached for task {task_id}. Waiting...")
await asyncio.sleep(4) # Assuming 15 RPM
# Include task_id in the task prompt to guide the agent
task = (
# f"Answer the following question accurately and concisely: \n"
"You are an advanced AI assistant tasked with answering questions from the GAIA benchmark accurately and concisely. Follow these guidelines:\n\n"
"1. **Question Parsing**:\n"
" - If the question includes direct speech or quoted text (e.g., \"Isn't that hot?\"), treat it as a precise query and preserve the quoted structure in your response.\n\n"
"2. **Handling Input Data**:\n"
f" - If the question references an attachment, use tool to download it with task_id: {task_id}\n"
" - When processing external data (e.g., YouTube transcripts, web searches), expect potential issues like missing punctuation, inconsistent formatting, or conversational text.\n"
" - If the input is ambiguous, prioritize extracting key information relevant to the question.\n\n"
"3. **Response Formatting**:\n"
" - Provide answers that are concise, accurate, and properly punctuated according to standard English grammar.\n"
" - Use quotation marks for direct quotes (e.g., \"Extreamly.\") and appropriate punctuation for lists, sentences, or clarifications.\n"
" - If asked about name of place or city, use full complete name without abbreviations (e.g. use Saint Petersburg instead of St.Petersburg). \n"
"4. **Error Handling**:\n"
" - If you cannot retrieve or process data (e.g., due to blocked requests), return a clear error message: \"Unable to retrieve data. Please refine the question or check external sources.\"\n\n"
f"Answer the following question: \n {question} \n"
# f"Return the answer as a string."
)
print(f"Calling agent.run for task {task_id}...")
response = await asyncio.to_thread(
self.agent.run,
task=task
)
print(f"Agent.run completed for task {task_id}.")
response = str(response)
if not response:
print(f"No answer found for task {task_id}.")
response = "No answer found."
print(f"MagAgent response: {response[:50]}...")
return response
except Exception as e:
error_msg = f"Error processing question for task {task_id}: {str(e)}. Check API key or network connectivity."
print(error_msg)
return error_msg