File size: 15,008 Bytes
b8b90a1
9e0ec52
716a5c8
5b72b9c
1cb9abe
c59b7ce
36d03df
8e7d1a1
ff92442
8e0562f
 
ab5793d
9bf5030
56f5d7e
36d03df
 
 
9e0ec52
f34d3d9
b748682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
007432f
6557ac2
 
 
788ac55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6557ac2
892d2c3
8e0562f
f34d3d9
 
 
 
 
 
 
 
ff43791
f34d3d9
 
 
 
 
 
 
 
 
 
 
 
 
 
ab5793d
 
 
36d03df
ab5793d
 
26b5e38
ab5793d
36d03df
4d51e39
 
 
ab5793d
0ec45cf
4d51e39
ab5793d
 
4d51e39
 
 
17263ef
ff43791
ab5793d
4d51e39
 
 
 
 
 
 
 
 
 
 
36d03df
 
 
 
4d51e39
36d03df
4d51e39
 
ab5793d
 
 
 
 
 
36d03df
 
 
 
ab5793d
4d51e39
ab5793d
de0487a
 
 
 
 
 
 
 
 
 
 
 
 
9bf5030
de0487a
 
9bf5030
e31dd8e
de0487a
9bf5030
1cb9abe
 
2e0c36d
1cb9abe
 
 
 
 
 
ce96e25
 
1cb9abe
 
 
 
ab5793d
1cb9abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87110c1
36d03df
 
 
 
 
 
 
c10da7d
36d03df
 
 
 
 
 
 
 
 
87110c1
 
 
 
 
 
 
 
 
 
 
 
 
ff43791
 
87110c1
9e0ec52
ed267db
3cf8730
2ff2939
98eeb83
3cf8730
d1568ce
bdb965a
 
 
89d512b
bdb965a
 
 
 
 
 
 
ac5cad0
8e7d1a1
b518461
 
36d03df
 
87110c1
8e7d1a1
9e0ec52
ea6e8d7
9e0ec52
36d03df
87110c1
70c1460
8706eb6
 
70c1460
8706eb6
788ac55
87110c1
 
b748682
36d03df
144372f
ce96e25
b518461
87110c1
b748682
9e0ec52
89d512b
9e0ec52
65b3309
3cf8730
a966bbf
9e0ec52
ed267db
 
65b3309
17263ef
65b3309
8e7d1a1
ce96e25
6557ac2
 
 
 
70c1460
6557ac2
 
 
 
 
b748682
6557ac2
 
70c1460
 
05cb108
8e7d1a1
65b3309
98eeb83
9e0ec52
8e7d1a1
9e0ec52
65b3309
 
 
 
 
3cf8730
9e0ec52
 
65b3309
9e0ec52
ce96e25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from smolagents import CodeAgent,  LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import pandas as pd
from typing import Optional
from token_bucket import Limiter, MemoryStorage
import yaml
from PIL import Image, ImageOps
import requests
from io import BytesIO
from markdownify import markdownify
import whisper

import time
import shutil
import traceback


#@tool
#def GoogleSearchTool(query: str) -> str:
#    """Tool for performing Google searches using Custom Search JSON API
#    Args:
#        query (str): Search query string
#    Returns:
#        str: Formatted search results
#    """
#    api_key = os.environ.get("GOOGLE_API_KEY")
#    cse_id = os.environ.get("GOOGLE_CSE_ID")
#    if not api_key or not cse_id:
#        raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
#    url = "https://www.googleapis.com/customsearch/v1"
#    params = {
#        "key": api_key,
#        "cx": cse_id,
#        "q": query,
#        "num": 5  # Number of results to return
#    }
#    try:
#        response = requests.get(url, params=params)
#        response.raise_for_status()
#        results = response.json().get("items", [])
#        return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
#    except Exception as e:
#        return f"Error performing Google search: {str(e)}"


from langchain_community.document_loaders import ArxivLoader

@tool
def search_arxiv(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query.
     Returns:
        str: Formatted search results
    """
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arxiv_results": formatted_search_docs}


class VisitWebpageTool(Tool):
    name = "visit_webpage"
    description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
    inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
    output_type = "string"

    def forward(self, url: str) -> str:
        try:
            response = requests.get(url, timeout=50)
            response.raise_for_status()
            markdown_content = markdownify(response.text).strip()
            markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
            from smolagents.utils import truncate_content
            return truncate_content(markdown_content, 10000)
        except requests.exceptions.Timeout:
            return "The request timed out. Please try again later or check the URL."
        except requests.exceptions.RequestException as e:
            return f"Error fetching the webpage: {str(e)}"
        except Exception as e:
            return f"An unexpected error occurred: {str(e)}"

    def __init__(self, *args, **kwargs):
        self.is_initialized = False

class DownloadTaskAttachmentTool(Tool):
    name = "download_file"
    description = "Downloads the file attached to the task ID and returns the local file path. Supports Excel (.xlsx), image (.png, .jpg), audio (.mp3), PDF (.pdf), and Python (.py) files."
    inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}}
    output_type = "string"
    DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

    def __init__(self, rate_limiter: Optional[Limiter] = None, default_api_url: str = DEFAULT_API_URL, *args, **kwargs):
        self.is_initialized = False
        self.rate_limiter = rate_limiter
        self.default_api_url = default_api_url

    def forward(self, task_id: str) -> str:
        file_url = f"{self.default_api_url}/files/{task_id}"
        print(f"Downloading file for task ID {task_id} from {file_url}...")
        try:
            if self.rate_limiter:
                while not self.rate_limiter.consume(1):
                    print(f"Rate limit reached for downloading file for task {task_id}. Waiting...")
                    time.sleep(4)  # Assuming 15 RPM
            response = requests.get(file_url, stream=True, timeout=50)
            response.raise_for_status()
            
            # Determine file extension based on Content-Type
            content_type = response.headers.get('Content-Type', '').lower()
            if 'image/png' in content_type:
                extension = '.png'
            elif 'image/jpeg' in content_type:
                extension = '.jpg'
            elif 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' in content_type:
                extension = '.xlsx'
            elif 'audio/mpeg' in content_type:
                extension = '.mp3'
            elif 'application/pdf' in content_type:
                extension = '.pdf'
            elif 'text/x-python' in content_type:
                extension = '.py'
            else:
                return f"Error: Unsupported file type {content_type} for task {task_id}. Try using visit_webpage or web_search if the content is online."
            
            local_file_path = f"downloads/{task_id}{extension}"
            os.makedirs("downloads", exist_ok=True)
            with open(local_file_path, "wb") as file:
                for chunk in response.iter_content(chunk_size=8192):
                    file.write(chunk)
            print(f"File downloaded successfully: {local_file_path}")
            return local_file_path
        except requests.exceptions.HTTPError as e:
            if e.response.status_code == 429:
                return f"Error: Rate limit exceeded for task {task_id}. Try again later."
            return f"Error downloading file for task {task_id}: {str(e)}"
        except requests.exceptions.RequestException as e:
            return f"Error downloading file for task {task_id}: {str(e)}"

class SpeechToTextTool(Tool):
    name = "speech_to_text"
    description = (
        "Converts an audio file to text using OpenAI Whisper."
    )
    inputs = {
        "audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
    }
    output_type = "string"

    def __init__(self):
        super().__init__()
        self.model = whisper.load_model("base")

    def forward(self, audio_path: str) -> str:
        if not os.path.exists(audio_path):
            return f"Error: File not found at {audio_path}"
        result = self.model.transcribe(audio_path)
        return result.get("text", "")

class ExcelReaderTool(Tool):
    name = "excel_reader"

    description = """
    This tool reads and processes Excel files (.xlsx, .xls).
    It can extract data, calculate statistics, and perform data analysis on spreadsheets.
    """
    inputs = {
        "excel_path": {
            "type": "string"
,
            "description": "The path to the Excel file to read",
        },
        "sheet_name": {
            "type": "string",

            "description": "The name of the sheet to read (optional, defaults to first sheet)",
            "nullable": True
        }
    }
    output_type = "string"
    
    def forward(self, excel_path: str, sheet_name: str = None) -> str:
        """
        Reads and processes the given Excel file.
        """
        try:
            # Check if the file exists
            if not os.path.exists(excel_path):
                return f"Error: Excel file not found at {excel_path}"
                
            import pandas as pd
            
            # Read the Excel file
            if sheet_name:
                df = pd.read_excel(excel_path, sheet_name=sheet_name)
            else:
                df = pd.read_excel(excel_path)
                
            # Get basic info about the data
            info = {
                "shape": df.shape,
                "columns": list(df.columns),
                "dtypes": df.dtypes.to_dict(),
                "head": df.head(5).to_dict()
            }
            
            # Return formatted info
            result = f"Excel file: {excel_path}\n"
            result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
            result += "Columns:\n"
            for col in info['columns']:
                result += f"- {col} ({info['dtypes'].get(col)})\n"
            
            result += "\nPreview (first 5 rows):\n"
            result += df.head(5).to_string()
            
            return result
            
        except Exception as e:
            return f"Error reading Excel file: {str(e)}"
     
class PythonCodeReaderTool(Tool):
    name = "read_python_code"
    description = "Reads a Python (.py) file and returns its content as a string."
    inputs = {
        "file_path": {"type": "string", "description": "The path to the Python file to read"}
    }
    output_type = "string"

    def forward(self, file_path: str) -> str:
        try:
            if not os.path.exists(file_path):
                return f"Error: Python file not found at {file_path}"
            with open(file_path, "r", encoding="utf-8") as file:
                content = file.read()
            return content
        except Exception as e:
            return f"Error reading Python file: {str(e)}"

from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
#from smolagents.tools import DuckDuckGoSearchException  # Replace with the actual exception if different

class RetryDuckDuckGoSearchTool(DuckDuckGoSearchTool):
    @retry(
        stop=stop_after_attempt(3),  # Retry up to 3 times
        wait=wait_exponential(multiplier=1, min=4, max=10),  # Wait 4s, 8s, then 10s
        retry=retry_if_exception_type(Exception)  # Retry on any exception
    )
    def forward(self, query: str) -> str:
        return super().forward(query)




class MagAgent:
    def __init__(self, rate_limiter: Optional[Limiter] = None):
        """Initialize the MagAgent with search tools."""
        self.rate_limiter = rate_limiter

        print("Initializing MagAgent with search tools...")
        model = LiteLLMModel(
            model_id="gemini/gemini-2.0-flash",
            api_key= os.environ.get("GEMINI_KEY"),
            max_tokens=8192
        )

#        model = LiteLLMModel(
#            model_id="gemini/gemini-1.5-flash",  # Use standard multimodal model
#            api_key=os.environ.get("GEMINI_KEY"),
#            max_tokens=8192,
#            api_base="https://generativelanguage.googleapis.com/v1beta"  # Correct endpoint
#        )
        
        # Load prompt templates
#        with open("prompts.yaml", 'r') as stream:
#            prompt_templates = yaml.safe_load(stream)

        # Initialize rate limiter for DuckDuckGoSearchTool
        search_rate_limiter = Limiter(rate=10/60, capacity=10, storage=MemoryStorage()) if not rate_limiter else rate_limiter
        
        self.agent = CodeAgent(
            model= model,
            tools=[
                DownloadTaskAttachmentTool(rate_limiter=rate_limiter),
                RetryDuckDuckGoSearchTool(),
                WikipediaSearchTool(),
                SpeechToTextTool(),
                ExcelReaderTool(),
                VisitWebpageTool(),
                PythonCodeReaderTool(),
                search_arxiv,
#                PNG2FENTool,
#                ChessEngineTool(),
#                GoogleSearchTool,
#                ImageAnalysisTool,
            ],
            verbosity_level=2,
#            prompt_templates=prompt_templates,
            add_base_tools=False,
            max_steps=20
        )
        print("MagAgent initialized.")

    async def __call__(self, question: str, task_id: str) -> str:
        """Process a question asynchronously using the MagAgent."""
        print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}")
        try:
            if self.rate_limiter:
                while not self.rate_limiter.consume(1):
                    print(f"Rate limit reached for task {task_id}. Waiting...")
                    await asyncio.sleep(4)  # Assuming 15 RPM
            # Include task_id in the task prompt to guide the agent
            task = (
#                f"Answer the following question accurately and concisely: \n"
                "You are an advanced AI assistant tasked with answering questions from the GAIA benchmark accurately and concisely. Follow these guidelines:\n\n"
                "1. **Question Parsing**:\n"
                "   - If the question includes direct speech or quoted text (e.g., \"Isn't that hot?\"), treat it as a precise query and preserve the quoted structure in your response.\n\n"
                "2. **Handling Input Data**:\n"
                f"   - If the question references an attachment, use tool to download it with task_id: {task_id}\n"
                "   - When processing external data (e.g., YouTube transcripts, web searches), expect potential issues like missing punctuation, inconsistent formatting, or conversational text.\n"
                "   - If the input is ambiguous, prioritize extracting key information relevant to the question.\n\n"
                "3. **Response Formatting**:\n"
                "   - Provide answers that are concise, accurate, and properly punctuated according to standard English grammar.\n"
                "   - Use quotation marks for direct quotes (e.g., \"Extreamly.\") and appropriate punctuation for lists, sentences, or clarifications.\n"
                "   - If asked about name of place or city, use full complete name without abbreviations (e.g. use Saint Petersburg instead of St.Petersburg). \n"
                "4. **Error Handling**:\n"
                "   - If you cannot retrieve or process data (e.g., due to blocked requests), return a clear error message: \"Unable to retrieve data. Please refine the question or check external sources.\"\n\n"
                f"Answer the following question: \n {question} \n"
         
#                f"Return the answer as a string."
            )
            print(f"Calling agent.run for task {task_id}...")
            response = await asyncio.to_thread(
                self.agent.run,
                task=task
            )
            print(f"Agent.run completed for task {task_id}.")
            response = str(response)
            if not response:
                print(f"No answer found for task {task_id}.")
                response = "No answer found."
            print(f"MagAgent response: {response[:50]}...")
            return response
        except Exception as e:
            error_msg = f"Error processing question for task {task_id}: {str(e)}. Check API key or network connectivity."
            print(error_msg)
            return error_msg