Spaces:
Running
Running
File size: 15,008 Bytes
b8b90a1 9e0ec52 716a5c8 5b72b9c 1cb9abe c59b7ce 36d03df 8e7d1a1 ff92442 8e0562f ab5793d 9bf5030 56f5d7e 36d03df 9e0ec52 f34d3d9 b748682 007432f 6557ac2 788ac55 6557ac2 892d2c3 8e0562f f34d3d9 ff43791 f34d3d9 ab5793d 36d03df ab5793d 26b5e38 ab5793d 36d03df 4d51e39 ab5793d 0ec45cf 4d51e39 ab5793d 4d51e39 17263ef ff43791 ab5793d 4d51e39 36d03df 4d51e39 36d03df 4d51e39 ab5793d 36d03df ab5793d 4d51e39 ab5793d de0487a 9bf5030 de0487a 9bf5030 e31dd8e de0487a 9bf5030 1cb9abe 2e0c36d 1cb9abe ce96e25 1cb9abe ab5793d 1cb9abe 87110c1 36d03df c10da7d 36d03df 87110c1 ff43791 87110c1 9e0ec52 ed267db 3cf8730 2ff2939 98eeb83 3cf8730 d1568ce bdb965a 89d512b bdb965a ac5cad0 8e7d1a1 b518461 36d03df 87110c1 8e7d1a1 9e0ec52 ea6e8d7 9e0ec52 36d03df 87110c1 70c1460 8706eb6 70c1460 8706eb6 788ac55 87110c1 b748682 36d03df 144372f ce96e25 b518461 87110c1 b748682 9e0ec52 89d512b 9e0ec52 65b3309 3cf8730 a966bbf 9e0ec52 ed267db 65b3309 17263ef 65b3309 8e7d1a1 ce96e25 6557ac2 70c1460 6557ac2 b748682 6557ac2 70c1460 05cb108 8e7d1a1 65b3309 98eeb83 9e0ec52 8e7d1a1 9e0ec52 65b3309 3cf8730 9e0ec52 65b3309 9e0ec52 ce96e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
from smolagents import CodeAgent, LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import pandas as pd
from typing import Optional
from token_bucket import Limiter, MemoryStorage
import yaml
from PIL import Image, ImageOps
import requests
from io import BytesIO
from markdownify import markdownify
import whisper
import time
import shutil
import traceback
#@tool
#def GoogleSearchTool(query: str) -> str:
# """Tool for performing Google searches using Custom Search JSON API
# Args:
# query (str): Search query string
# Returns:
# str: Formatted search results
# """
# api_key = os.environ.get("GOOGLE_API_KEY")
# cse_id = os.environ.get("GOOGLE_CSE_ID")
# if not api_key or not cse_id:
# raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
# url = "https://www.googleapis.com/customsearch/v1"
# params = {
# "key": api_key,
# "cx": cse_id,
# "q": query,
# "num": 5 # Number of results to return
# }
# try:
# response = requests.get(url, params=params)
# response.raise_for_status()
# results = response.json().get("items", [])
# return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
# except Exception as e:
# return f"Error performing Google search: {str(e)}"
from langchain_community.document_loaders import ArxivLoader
@tool
def search_arxiv(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query.
Returns:
str: Formatted search results
"""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arxiv_results": formatted_search_docs}
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
output_type = "string"
def forward(self, url: str) -> str:
try:
response = requests.get(url, timeout=50)
response.raise_for_status()
markdown_content = markdownify(response.text).strip()
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
from smolagents.utils import truncate_content
return truncate_content(markdown_content, 10000)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except requests.exceptions.RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def __init__(self, *args, **kwargs):
self.is_initialized = False
class DownloadTaskAttachmentTool(Tool):
name = "download_file"
description = "Downloads the file attached to the task ID and returns the local file path. Supports Excel (.xlsx), image (.png, .jpg), audio (.mp3), PDF (.pdf), and Python (.py) files."
inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}}
output_type = "string"
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def __init__(self, rate_limiter: Optional[Limiter] = None, default_api_url: str = DEFAULT_API_URL, *args, **kwargs):
self.is_initialized = False
self.rate_limiter = rate_limiter
self.default_api_url = default_api_url
def forward(self, task_id: str) -> str:
file_url = f"{self.default_api_url}/files/{task_id}"
print(f"Downloading file for task ID {task_id} from {file_url}...")
try:
if self.rate_limiter:
while not self.rate_limiter.consume(1):
print(f"Rate limit reached for downloading file for task {task_id}. Waiting...")
time.sleep(4) # Assuming 15 RPM
response = requests.get(file_url, stream=True, timeout=50)
response.raise_for_status()
# Determine file extension based on Content-Type
content_type = response.headers.get('Content-Type', '').lower()
if 'image/png' in content_type:
extension = '.png'
elif 'image/jpeg' in content_type:
extension = '.jpg'
elif 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' in content_type:
extension = '.xlsx'
elif 'audio/mpeg' in content_type:
extension = '.mp3'
elif 'application/pdf' in content_type:
extension = '.pdf'
elif 'text/x-python' in content_type:
extension = '.py'
else:
return f"Error: Unsupported file type {content_type} for task {task_id}. Try using visit_webpage or web_search if the content is online."
local_file_path = f"downloads/{task_id}{extension}"
os.makedirs("downloads", exist_ok=True)
with open(local_file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"File downloaded successfully: {local_file_path}")
return local_file_path
except requests.exceptions.HTTPError as e:
if e.response.status_code == 429:
return f"Error: Rate limit exceeded for task {task_id}. Try again later."
return f"Error downloading file for task {task_id}: {str(e)}"
except requests.exceptions.RequestException as e:
return f"Error downloading file for task {task_id}: {str(e)}"
class SpeechToTextTool(Tool):
name = "speech_to_text"
description = (
"Converts an audio file to text using OpenAI Whisper."
)
inputs = {
"audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
}
output_type = "string"
def __init__(self):
super().__init__()
self.model = whisper.load_model("base")
def forward(self, audio_path: str) -> str:
if not os.path.exists(audio_path):
return f"Error: File not found at {audio_path}"
result = self.model.transcribe(audio_path)
return result.get("text", "")
class ExcelReaderTool(Tool):
name = "excel_reader"
description = """
This tool reads and processes Excel files (.xlsx, .xls).
It can extract data, calculate statistics, and perform data analysis on spreadsheets.
"""
inputs = {
"excel_path": {
"type": "string"
,
"description": "The path to the Excel file to read",
},
"sheet_name": {
"type": "string",
"description": "The name of the sheet to read (optional, defaults to first sheet)",
"nullable": True
}
}
output_type = "string"
def forward(self, excel_path: str, sheet_name: str = None) -> str:
"""
Reads and processes the given Excel file.
"""
try:
# Check if the file exists
if not os.path.exists(excel_path):
return f"Error: Excel file not found at {excel_path}"
import pandas as pd
# Read the Excel file
if sheet_name:
df = pd.read_excel(excel_path, sheet_name=sheet_name)
else:
df = pd.read_excel(excel_path)
# Get basic info about the data
info = {
"shape": df.shape,
"columns": list(df.columns),
"dtypes": df.dtypes.to_dict(),
"head": df.head(5).to_dict()
}
# Return formatted info
result = f"Excel file: {excel_path}\n"
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
result += "Columns:\n"
for col in info['columns']:
result += f"- {col} ({info['dtypes'].get(col)})\n"
result += "\nPreview (first 5 rows):\n"
result += df.head(5).to_string()
return result
except Exception as e:
return f"Error reading Excel file: {str(e)}"
class PythonCodeReaderTool(Tool):
name = "read_python_code"
description = "Reads a Python (.py) file and returns its content as a string."
inputs = {
"file_path": {"type": "string", "description": "The path to the Python file to read"}
}
output_type = "string"
def forward(self, file_path: str) -> str:
try:
if not os.path.exists(file_path):
return f"Error: Python file not found at {file_path}"
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
except Exception as e:
return f"Error reading Python file: {str(e)}"
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
#from smolagents.tools import DuckDuckGoSearchException # Replace with the actual exception if different
class RetryDuckDuckGoSearchTool(DuckDuckGoSearchTool):
@retry(
stop=stop_after_attempt(3), # Retry up to 3 times
wait=wait_exponential(multiplier=1, min=4, max=10), # Wait 4s, 8s, then 10s
retry=retry_if_exception_type(Exception) # Retry on any exception
)
def forward(self, query: str) -> str:
return super().forward(query)
class MagAgent:
def __init__(self, rate_limiter: Optional[Limiter] = None):
"""Initialize the MagAgent with search tools."""
self.rate_limiter = rate_limiter
print("Initializing MagAgent with search tools...")
model = LiteLLMModel(
model_id="gemini/gemini-2.0-flash",
api_key= os.environ.get("GEMINI_KEY"),
max_tokens=8192
)
# model = LiteLLMModel(
# model_id="gemini/gemini-1.5-flash", # Use standard multimodal model
# api_key=os.environ.get("GEMINI_KEY"),
# max_tokens=8192,
# api_base="https://generativelanguage.googleapis.com/v1beta" # Correct endpoint
# )
# Load prompt templates
# with open("prompts.yaml", 'r') as stream:
# prompt_templates = yaml.safe_load(stream)
# Initialize rate limiter for DuckDuckGoSearchTool
search_rate_limiter = Limiter(rate=10/60, capacity=10, storage=MemoryStorage()) if not rate_limiter else rate_limiter
self.agent = CodeAgent(
model= model,
tools=[
DownloadTaskAttachmentTool(rate_limiter=rate_limiter),
RetryDuckDuckGoSearchTool(),
WikipediaSearchTool(),
SpeechToTextTool(),
ExcelReaderTool(),
VisitWebpageTool(),
PythonCodeReaderTool(),
search_arxiv,
# PNG2FENTool,
# ChessEngineTool(),
# GoogleSearchTool,
# ImageAnalysisTool,
],
verbosity_level=2,
# prompt_templates=prompt_templates,
add_base_tools=False,
max_steps=20
)
print("MagAgent initialized.")
async def __call__(self, question: str, task_id: str) -> str:
"""Process a question asynchronously using the MagAgent."""
print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}")
try:
if self.rate_limiter:
while not self.rate_limiter.consume(1):
print(f"Rate limit reached for task {task_id}. Waiting...")
await asyncio.sleep(4) # Assuming 15 RPM
# Include task_id in the task prompt to guide the agent
task = (
# f"Answer the following question accurately and concisely: \n"
"You are an advanced AI assistant tasked with answering questions from the GAIA benchmark accurately and concisely. Follow these guidelines:\n\n"
"1. **Question Parsing**:\n"
" - If the question includes direct speech or quoted text (e.g., \"Isn't that hot?\"), treat it as a precise query and preserve the quoted structure in your response.\n\n"
"2. **Handling Input Data**:\n"
f" - If the question references an attachment, use tool to download it with task_id: {task_id}\n"
" - When processing external data (e.g., YouTube transcripts, web searches), expect potential issues like missing punctuation, inconsistent formatting, or conversational text.\n"
" - If the input is ambiguous, prioritize extracting key information relevant to the question.\n\n"
"3. **Response Formatting**:\n"
" - Provide answers that are concise, accurate, and properly punctuated according to standard English grammar.\n"
" - Use quotation marks for direct quotes (e.g., \"Extreamly.\") and appropriate punctuation for lists, sentences, or clarifications.\n"
" - If asked about name of place or city, use full complete name without abbreviations (e.g. use Saint Petersburg instead of St.Petersburg). \n"
"4. **Error Handling**:\n"
" - If you cannot retrieve or process data (e.g., due to blocked requests), return a clear error message: \"Unable to retrieve data. Please refine the question or check external sources.\"\n\n"
f"Answer the following question: \n {question} \n"
# f"Return the answer as a string."
)
print(f"Calling agent.run for task {task_id}...")
response = await asyncio.to_thread(
self.agent.run,
task=task
)
print(f"Agent.run completed for task {task_id}.")
response = str(response)
if not response:
print(f"No answer found for task {task_id}.")
response = "No answer found."
print(f"MagAgent response: {response[:50]}...")
return response
except Exception as e:
error_msg = f"Error processing question for task {task_id}: {str(e)}. Check API key or network connectivity."
print(error_msg)
return error_msg |