from smolagents import CodeAgent, LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel import asyncio import os import re import pandas as pd from typing import Optional from token_bucket import Limiter, MemoryStorage import yaml from PIL import Image, ImageOps import requests from io import BytesIO from markdownify import markdownify import whisper import time import shutil import traceback #@tool #def GoogleSearchTool(query: str) -> str: # """Tool for performing Google searches using Custom Search JSON API # Args: # query (str): Search query string # Returns: # str: Formatted search results # """ # api_key = os.environ.get("GOOGLE_API_KEY") # cse_id = os.environ.get("GOOGLE_CSE_ID") # if not api_key or not cse_id: # raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.") # url = "https://www.googleapis.com/customsearch/v1" # params = { # "key": api_key, # "cx": cse_id, # "q": query, # "num": 5 # Number of results to return # } # try: # response = requests.get(url, params=params) # response.raise_for_status() # results = response.json().get("items", []) # return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found." # except Exception as e: # return f"Error performing Google search: {str(e)}" from langchain_community.document_loaders import ArxivLoader @tool def search_arxiv(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query. Returns: str: Formatted search results """ search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arxiv_results": formatted_search_docs} class VisitWebpageTool(Tool): name = "visit_webpage" description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages." inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}} output_type = "string" def forward(self, url: str) -> str: try: response = requests.get(url, timeout=50) response.raise_for_status() markdown_content = markdownify(response.text).strip() markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content) from smolagents.utils import truncate_content return truncate_content(markdown_content, 10000) except requests.exceptions.Timeout: return "The request timed out. Please try again later or check the URL." except requests.exceptions.RequestException as e: return f"Error fetching the webpage: {str(e)}" except Exception as e: return f"An unexpected error occurred: {str(e)}" def __init__(self, *args, **kwargs): self.is_initialized = False class DownloadTaskAttachmentTool(Tool): name = "download_file" description = "Downloads the file attached to the task ID and returns the local file path. Supports Excel (.xlsx), image (.png, .jpg), audio (.mp3), PDF (.pdf), and Python (.py) files." inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}} output_type = "string" DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" def __init__(self, rate_limiter: Optional[Limiter] = None, default_api_url: str = DEFAULT_API_URL, *args, **kwargs): self.is_initialized = False self.rate_limiter = rate_limiter self.default_api_url = default_api_url def forward(self, task_id: str) -> str: file_url = f"{self.default_api_url}/files/{task_id}" print(f"Downloading file for task ID {task_id} from {file_url}...") try: if self.rate_limiter: while not self.rate_limiter.consume(1): print(f"Rate limit reached for downloading file for task {task_id}. Waiting...") time.sleep(4) # Assuming 15 RPM response = requests.get(file_url, stream=True, timeout=50) response.raise_for_status() # Determine file extension based on Content-Type content_type = response.headers.get('Content-Type', '').lower() if 'image/png' in content_type: extension = '.png' elif 'image/jpeg' in content_type: extension = '.jpg' elif 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' in content_type: extension = '.xlsx' elif 'audio/mpeg' in content_type: extension = '.mp3' elif 'application/pdf' in content_type: extension = '.pdf' elif 'text/x-python' in content_type: extension = '.py' else: return f"Error: Unsupported file type {content_type} for task {task_id}. Try using visit_webpage or web_search if the content is online." local_file_path = f"downloads/{task_id}{extension}" os.makedirs("downloads", exist_ok=True) with open(local_file_path, "wb") as file: for chunk in response.iter_content(chunk_size=8192): file.write(chunk) print(f"File downloaded successfully: {local_file_path}") return local_file_path except requests.exceptions.HTTPError as e: if e.response.status_code == 429: return f"Error: Rate limit exceeded for task {task_id}. Try again later." return f"Error downloading file for task {task_id}: {str(e)}" except requests.exceptions.RequestException as e: return f"Error downloading file for task {task_id}: {str(e)}" class SpeechToTextTool(Tool): name = "speech_to_text" description = ( "Converts an audio file to text using OpenAI Whisper." ) inputs = { "audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"}, } output_type = "string" def __init__(self): super().__init__() self.model = whisper.load_model("base") def forward(self, audio_path: str) -> str: if not os.path.exists(audio_path): return f"Error: File not found at {audio_path}" result = self.model.transcribe(audio_path) return result.get("text", "") class ExcelReaderTool(Tool): name = "excel_reader" description = """ This tool reads and processes Excel files (.xlsx, .xls). It can extract data, calculate statistics, and perform data analysis on spreadsheets. """ inputs = { "excel_path": { "type": "string" , "description": "The path to the Excel file to read", }, "sheet_name": { "type": "string", "description": "The name of the sheet to read (optional, defaults to first sheet)", "nullable": True } } output_type = "string" def forward(self, excel_path: str, sheet_name: str = None) -> str: """ Reads and processes the given Excel file. """ try: # Check if the file exists if not os.path.exists(excel_path): return f"Error: Excel file not found at {excel_path}" import pandas as pd # Read the Excel file if sheet_name: df = pd.read_excel(excel_path, sheet_name=sheet_name) else: df = pd.read_excel(excel_path) # Get basic info about the data info = { "shape": df.shape, "columns": list(df.columns), "dtypes": df.dtypes.to_dict(), "head": df.head(5).to_dict() } # Return formatted info result = f"Excel file: {excel_path}\n" result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n" result += "Columns:\n" for col in info['columns']: result += f"- {col} ({info['dtypes'].get(col)})\n" result += "\nPreview (first 5 rows):\n" result += df.head(5).to_string() return result except Exception as e: return f"Error reading Excel file: {str(e)}" class PythonCodeReaderTool(Tool): name = "read_python_code" description = "Reads a Python (.py) file and returns its content as a string." inputs = { "file_path": {"type": "string", "description": "The path to the Python file to read"} } output_type = "string" def forward(self, file_path: str) -> str: try: if not os.path.exists(file_path): return f"Error: Python file not found at {file_path}" with open(file_path, "r", encoding="utf-8") as file: content = file.read() return content except Exception as e: return f"Error reading Python file: {str(e)}" from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type #from smolagents.tools import DuckDuckGoSearchException # Replace with the actual exception if different class RetryDuckDuckGoSearchTool(DuckDuckGoSearchTool): @retry( stop=stop_after_attempt(3), # Retry up to 3 times wait=wait_exponential(multiplier=1, min=4, max=10), # Wait 4s, 8s, then 10s retry=retry_if_exception_type(Exception) # Retry on any exception ) def forward(self, query: str) -> str: return super().forward(query) class MagAgent: def __init__(self, rate_limiter: Optional[Limiter] = None): """Initialize the MagAgent with search tools.""" self.rate_limiter = rate_limiter print("Initializing MagAgent with search tools...") model = LiteLLMModel( model_id="gemini/gemini-2.0-flash", api_key= os.environ.get("GEMINI_KEY"), max_tokens=8192 ) # model = LiteLLMModel( # model_id="gemini/gemini-1.5-flash", # Use standard multimodal model # api_key=os.environ.get("GEMINI_KEY"), # max_tokens=8192, # api_base="https://generativelanguage.googleapis.com/v1beta" # Correct endpoint # ) # Load prompt templates # with open("prompts.yaml", 'r') as stream: # prompt_templates = yaml.safe_load(stream) # Initialize rate limiter for DuckDuckGoSearchTool search_rate_limiter = Limiter(rate=10/60, capacity=10, storage=MemoryStorage()) if not rate_limiter else rate_limiter self.agent = CodeAgent( model= model, tools=[ DownloadTaskAttachmentTool(rate_limiter=rate_limiter), RetryDuckDuckGoSearchTool(), WikipediaSearchTool(), SpeechToTextTool(), ExcelReaderTool(), VisitWebpageTool(), PythonCodeReaderTool(), search_arxiv, # PNG2FENTool, # ChessEngineTool(), # GoogleSearchTool, # ImageAnalysisTool, ], verbosity_level=2, # prompt_templates=prompt_templates, add_base_tools=False, max_steps=20 ) print("MagAgent initialized.") async def __call__(self, question: str, task_id: str) -> str: """Process a question asynchronously using the MagAgent.""" print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}") try: if self.rate_limiter: while not self.rate_limiter.consume(1): print(f"Rate limit reached for task {task_id}. Waiting...") await asyncio.sleep(4) # Assuming 15 RPM # Include task_id in the task prompt to guide the agent task = ( # f"Answer the following question accurately and concisely: \n" "You are an advanced AI assistant tasked with answering questions from the GAIA benchmark accurately and concisely. Follow these guidelines:\n\n" "1. **Question Parsing**:\n" " - If the question includes direct speech or quoted text (e.g., \"Isn't that hot?\"), treat it as a precise query and preserve the quoted structure in your response.\n\n" "2. **Handling Input Data**:\n" f" - If the question references an attachment, use tool to download it with task_id: {task_id}\n" " - When processing external data (e.g., YouTube transcripts, web searches), expect potential issues like missing punctuation, inconsistent formatting, or conversational text.\n" " - If the input is ambiguous, prioritize extracting key information relevant to the question.\n\n" "3. **Response Formatting**:\n" " - Provide answers that are concise, accurate, and properly punctuated according to standard English grammar.\n" " - Use quotation marks for direct quotes (e.g., \"Extreamly.\") and appropriate punctuation for lists, sentences, or clarifications.\n" " - If asked about name of place or city, use full complete name without abbreviations (e.g. use Saint Petersburg instead of St.Petersburg). \n" "4. **Error Handling**:\n" " - If you cannot retrieve or process data (e.g., due to blocked requests), return a clear error message: \"Unable to retrieve data. Please refine the question or check external sources.\"\n\n" f"Answer the following question: \n {question} \n" # f"Return the answer as a string." ) print(f"Calling agent.run for task {task_id}...") response = await asyncio.to_thread( self.agent.run, task=task ) print(f"Agent.run completed for task {task_id}.") response = str(response) if not response: print(f"No answer found for task {task_id}.") response = "No answer found." print(f"MagAgent response: {response[:50]}...") return response except Exception as e: error_msg = f"Error processing question for task {task_id}: {str(e)}. Check API key or network connectivity." print(error_msg) return error_msg